[C++]使用纯opencv去部署yolov9的onnx模型

【介绍】

部署 YOLOv9 ONNX 模型在 OpenCV 的 C++ 环境中涉及一系列步骤。以下是一个简化的部署方案概述,以及相关的文案。

部署方案概述:

  1. 模型准备:首先,你需要确保你有 YOLOv9 的 ONNX 模型文件。这个文件包含了模型的结构和权重。
  2. 环境配置:安装 OpenCV 库,并确保它支持 ONNX 模型的加载和推理。
  3. 加载模型:使用 OpenCV 的 cv::dnn::readNetFromONNX 函数加载模型。这个函数会读取模型文件,并创建一个可以用于推理的网络对象。
  4. 预处理输入:YOLO 模型通常需要特定格式的输入数据,如特定大小的图像。你需要编写代码来读取原始图像,将其转换为模型所需的格式,并可能需要进行归一化或其他预处理步骤。
  5. 执行推理:将预处理后的输入数据传递给网络对象,执行推理。这通常是通过调用 cv::dnn::Net::forward 函数来完成的。
  6. 后处理输出:模型的输出通常是一个或多个张量,需要后处理才能得到最终的检测结果。这可能涉及解析输出张量,提取边界框、类别和置信度等信息。
  7. 显示结果:最后,你可以使用 OpenCV 的绘图功能在原始图像上显示检测结果。

文案示例:

“在现代计算机视觉应用中,部署高效的目标检测模型至关重要。使用 OpenCV 的 C++ 接口,我们可以轻松加载和部署 YOLOv9 ONNX 模型,实现实时的目标检测。通过准备模型文件、配置开发环境、加载模型、预处理输入数据、执行推理和后处理输出,我们可以在各种应用场景中快速集成 YOLOv9 的强大功能。无论是安全监控、自动驾驶还是智能家居,YOLOv9 与 OpenCV 的结合都为我们提供了强大的工具来检测和识别图像中的目标。”

【效果演示】

【视频演示】

C++使用纯opencv部署yolov9的onnx模型_哔哩哔哩_bilibili使用C++ opencv去部署yolov9的onnx模型,无其他依赖。测试环境vs2019opencv==4.9.0cmake==3.24.3, 视频播放量 128、弹幕量 0、点赞数 2、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:C#使用onnxruntime部署Detic检测2万1千种类别的物体,使用纯opencv部署yolov5目标检测模型onnx,刘宪华巴黎粉丝路透,和老板在一起的时刻,满满的幸福感!,好几个朋友跟我说,这车进不了藏,2024易语言yolo9全网最强框架更新~,【爱心表白代码】身边学编程的朋友还没给你安排上这个爱心代码吗?赶快给她敲一个吧!!,yolov9+deepsort+pyqt5实现目标追踪结果演示,C#利用openvino部署yolov8-onnx目标检测模型,不需要训练?YOLO-World:实时开放词汇目标检测,2024年B站最强OpenCV实战进阶教程!,一周学完帮你少走99%弯路!【图像分割/人脸识别/车辆检测/机器视觉】icon-default.png?t=N7T8https://www.bilibili.com/video/BV1Wt421t79e/

【部分实现代码】

#include <iostream>
#include<opencv2/opencv.hpp>#include<math.h>
#include "yolov9.h"
#include<time.h>using namespace std;
using namespace cv;
using namespace dnn;template<typename _Tp>
int yolov9(_Tp& cls,Mat& img,string& model_path)
{Net net;if (cls.ReadModel(net, model_path, false)) {cout << "read net ok!" << endl;}else {return -1;}//生成随机颜色vector<Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(Scalar(b, g, r));}vector<OutputSeg> result;if (cls.Detect(img, net, result)) {DrawPred(img, result, cls._className, color);}else {cout << "Detect Failed!" << endl;}system("pause");return 0;
}int main() {string img_path = "E:\\person.jpg";string detect_model_path = "C:\\Users\\Administrator\\Desktop\\yolov9-opencv-det-cplus\\models\\yolov9-c.onnx";Mat img = imread(img_path);Yolov9 task_detect;yolov9(task_detect,img,detect_model_path);    //Opencv detectreturn 0;
}

【测试环境】

vs2019

opencv==4.9.0

cmake==3.24.3

【源码下载】 

https://download.csdn.net/download/FL1623863129/88903814

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/508203.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【排序】基于快速选择算法的快排实现

目录 一、常用排序算法比较 二、快速选择算法 快速选择 图解快速选择 三、代码实现 一、常用排序算法比较 排序 时间复杂度 空间复杂度 稳定性 插入排序 O(n) O(1) 稳定 希尔排序 O(nlogn)-O(n)取决于增量序列 O(1) 不稳定 选择排序 O(n) O(1) 不稳定 冒泡…

STM32(9)EXTI

EXTI工作原理 EXTI的寄存器组 每个寄存器都是20个比特位&#xff0c;对应EXTI的20路通道&#xff0c;如这6个寄存器的最左边就都是对应通道1的

Spring:EnclosingClass工具类分辨

Spring&#xff1a;EnclosingClass工具类分辨 1 前言 通过Spring的工具分辨EnclosingClass类。 测试类如下&#xff1a; package com.xiaoxu.test.enclosingClass;/*** author xiaoxu* date 2024-01-18* java_demo2:com.xiaoxu.test.enclosingClass.Outter*/ public class …

vue2 element 实现表格点击详情,返回时保留查询参数

先直观一点&#xff0c;上图 列表共5条数据&#xff0c;准备输入Author过滤条件进行查询 进入查看详情页&#xff0c;就随便搞了个按钮 啥都没调啦 点击返回后 一开始准备用vuex做这个功能&#xff0c;后来放弃了&#xff0c;想到直接用路由去做可能也不错。有时间再整一套…

Onenote软件新建笔记本时报错:无法在以下位置新建笔记本

报错现象&#xff1a; 当在OneNote软件上&#xff0c;新建笔记本时&#xff1a; 然后&#xff0c;尝试重新登录微软账户&#xff0c;也不行&#xff0c;提示报错&#xff1a; 解决办法&#xff1a; 打开一个新的记事本&#xff0c;复制粘贴以下内容&#xff1a; C:\Users\Adm…

pytest多重断言插件-pytest-assume

最近准备废弃之前用metersphere做的接口自动化&#xff0c;转战pytest了&#xff0c;先来分享下最近接触到的一个插件&#xff1a;pytest-assume。 在使用这个插件之前&#xff0c;如果一个用例里面有多个断言的话&#xff0c;前面的断言失败了&#xff0c;就不会去执行后面的断…

MATLAB环境下基于区域椭圆拟合的细胞分割方法

使用图像分割技术可以找到图像中的目标区域&#xff0c;目标区域可以定义为具有特定值的单个区域&#xff0c;也可以定义为具有相同值的多个区域。目前图像分割已经融入到生活中的方方面面&#xff0c;在遥感领域&#xff0c;它应用于航拍图中的地形、地貌的分割&#xff1b;在…

如何防止 Elasticsearch 服务 OOM ?

ES 和传统关系型数据库有很多区别&#xff0c; 比如传统数据中普遍都有一个叫“最大连接数”的设置。目的是使数据库系统工作在可控的负载下&#xff0c;避免出现负载过高&#xff0c;资源耗尽&#xff0c;谁也无法登录的局面。 那 ES 在这方面有类似参数吗&#xff1f;答案是…

中科大计网学习记录笔记(十七):拥塞控制原理 | TCP 拥塞控制

前言&#xff1a; 学习视频&#xff1a;中科大郑烇、杨坚全套《计算机网络&#xff08;自顶向下方法 第7版&#xff0c;James F.Kurose&#xff0c;Keith W.Ross&#xff09;》课程 该视频是B站非常著名的计网学习视频&#xff0c;但相信很多朋友和我一样在听完前面的部分发现信…

LeetCode第125场双周赛个人题解

目录 100231. 超过阈值的最少操作数 I 原题链接 思路分析 AC代码 100232. 超过阈值的最少操作数 II 原题链接 思路分析 AC代码 100226. 在带权树网络中统计可连接服务器对数目 原题链接 思路分析 AC代码 100210. 最大节点价值之和 原题链接 思路分析 AC代码 10023…

Linux:kubernetes(k8s)部署CNI网络插件(4)

在上一章进行了node加入master Linux&#xff1a;kubernetes&#xff08;k8s&#xff09;node节点加入master主节点&#xff08;3&#xff09;-CSDN博客https://blog.csdn.net/w14768855/article/details/136420447?spm1001.2014.3001.5501 但是他们显示还是没准备好 看一下…

python科学计算库之Numpy库的使用的简单习题

Numpy库 Numpy&#xff08;Numerical Python的缩写&#xff09;是一个开源的Python库&#xff0c;用于进行科学计算。它提供了一个高性能的多维数组对象&#xff08;ndarray&#xff09;及用于处理这些数组的各种工具和函数。由于其高效和灵活的数据结构以及丰富的功能&#x…