【kubernetes】关于k8s集群的存储卷

目录

一、存储卷的分类

二、empty存储卷以及特点

三、hostpath存储卷以及特点

四、nfs存储卷以及特点

五、pvc存储卷

查看pv的定义 

查看pvc的定义

实操:静态创建pv的方式 实现pvc存储卷

步骤一:先完成nfs的目录共享,需要准备不同的目录

步骤二:编写配置文件,完成静态pv的创建,设置访问模式和资源大小等

步骤三:编写pvc创建配置文件,完成创建,查看是否与pv绑定

步骤四:基于pvc存储卷创建pod

实操:基于nfs存储卷插件动态创建pv,实现pvc存储卷

步骤一:完成nfs共享准备

步骤二:创建 Service Account,用来管理 NFS Provisioner 在 k8s 集群中运行的权限,设置 nfs-client 对 PV,PVC,StorageClass 等的规则

步骤三:使用 Deployment 来创建 NFS Provisioner

​编辑 步骤四:创建 StorageClass,负责建立 PVC 并调用 NFS provisioner 进行预定的工作,并让 PV 与 PVC 建立关联

步骤五:创建pvc存储卷以及创建pod测试

 六、总结


一、存储卷的分类

容器磁盘上的文件的生命周期是短暂的,这就使得在容器中运行重要应用时会出现一些问题。首先,当容器崩溃时,kubelet 会重启它,但是容器中的文件将丢失——容器以干净的状态(镜像最初的状态)重新启动(容器一旦被删除再次重建,那么数据都会丢失)。其次,在Pod中同时运行多个容器时,这些容器之间通常需要共享文件。Kubernetes 中的Volume抽象就很好的解决了这些问题。Pod中的容器通过Pause容器共享Volume。
 

查看支持的存储卷类型

kubectl explain pod.spec.volumes

常用的有:

emptyDir、hostPath、nfs、persistentVolumeClaim 

二、empty存储卷以及特点

当Pod被分配给节点时,首先创建emptyDir卷,并且只要该Pod在该节点上运行,该卷就会存在。正如卷的名字所述,它最初是空的。Pod 中的容器可以读取和写入emptyDir卷中的相同文件,尽管该卷可以挂载到每个容器中的相同或不同路径上。当出于任何原因从节点中删除 Pod 时,emptyDir中的数据将被永久删除。

piVersion: v1
kind: Pod
metadata:name: pod01namespace: defaultlabels:app: myapp
spec:containers:- name: myappimage: soscscs/myapp:v1imagePullPolicy: IfNotPresentports:- name: httpcontainerPort: 80#定义容器挂载内容volumeMounts:#使用的存储卷名称,如果跟下面volume字段name值相同,则表示使用volume的这个存储卷- name: html#挂载至容器中哪个目录mountPath: /usr/share/nginx/html/- name: busyboximage: busybox:1.28imagePullPolicy: IfNotPresentvolumeMounts:- name: html#在容器内定义挂载存储名称和挂载路径mountPath: /data/command: ['/bin/sh','-c','while true;do echo $(date) >> /data/index.html;sleep 2;done']#定义存储卷volumes:#定义存储卷名称  - name: html#定义存储卷类型emptyDir: {}

在上面定义了2个容器,其中一个容器是输入日期到index.html中,然后另一个容器是否可以获取日期文件index.html。以验证两个容器之间挂载的emptyDir实现共享。

三、hostpath存储卷以及特点

apiVersion: v1
kind: Pod
metadata:name: pod01namespace: default
spec:containers:- name: myappimage: soscscs/myapp:v1#定义容器挂载内容volumeMounts:#使用的存储卷名称,如果跟下面volume字段name值相同,则表示使用volume的这个存储卷- name: html#挂载至容器中哪个目录mountPath: /usr/share/nginx/html#读写挂载方式,默认为读写模式falsereadOnly: false#volumes字段定义了paues容器关联的宿主机或分布式文件系统存储卷volumes:#存储卷名称- name: html#路径,为宿主机存储路径hostPath:#在宿主机上目录的路径path: /data/pod/volume1#定义类型,这表示如果宿主机没有此目录则会自动创建type: DirectoryOrCreate

删除pod,再重建,验证是否依旧可以访问原来的内容 

 

 删除pod,再重建,指定到node01节点,验证是否依旧可以访问原来的内容 

四、nfs存储卷以及特点

准备好nfs共享

apiVersion: v1
kind: Pod
metadata:name: pod-vol-nfsnamespace: default
spec:containers:- name: myappimage: soscscs/myapp:v1volumeMounts:- name: htmlmountPath: /usr/share/nginx/htmlvolumes:- name: htmlnfs:  #存储卷类型为nfspath: /opt/k8s  #共享的目录为/opt/k8sserver: 192.168.20.10 #可以为主机名(但是做了hosts映射),或者ip也可以

 删除nfs相关pod,再重新创建,可以得到数据的持久化存储

可以实现跨node节点的完成数据持久化

五、pvc存储卷

PV 全称叫做 Persistent Volume,持久化存储卷。它是用来描述或者说用来定义一个存储卷的,这个通常都是由运维工程师来定义。

PVC 的全称是 Persistent Volume Claim,是持久化存储的请求。它是用来描述希望使用什么样的或者说是满足什么条件的 PV 存储。

PVC 的使用逻辑:在 Pod 中定义一个存储卷(该存储卷类型为 PVC),定义的时候直接指定大小,PVC 必须与对应的 PV 建立关系,PVC 会根据配置的定义去 PV 申请,而 PV 是由存储空间创建出来的。PV 和 PVC 是 Kubernetes 抽象出来的一种存储资源。


上面介绍的PV和PVC模式是需要运维人员先创建好PV,然后开发人员定义好PVC进行一对一的Bond,但是如果PVC请求成千上万,那么就需要创建成千上万的PV,对于运维人员来说维护成本很高,Kubernetes提供一种自动创建PV的机制,叫StorageClass,它的作用就是创建PV的模板

创建 StorageClass 需要定义 PV 的属性,比如存储类型、大小等;另外创建这种 PV 需要用到的存储插件,比如 Ceph 等。 有了这两部分信息,

Kubernetes 就能够根据用户提交的 PVC,找到对应的 StorageClass,然后 Kubernetes 就会调用 StorageClass 声明的存储插件,自动创建需要的 PV 并进行绑定。

PV是集群中的资源。 PVC是对这些资源的请求,也是对资源的索引检查。 

PV和PVC之间的相互作用遵循这个生命周期:
Provisioning(配置)---> Binding(绑定)---> Using(使用)---> Releasing(释放) ---> Recycling(回收)

●Provisioning,即 PV 的创建,可以直接创建 PV(静态方式),也可以使用 StorageClass 动态创建
●Binding,将 PV 分配给 PVC
●Using,Pod 通过 PVC 使用该 Volume,并可以通过准入控制StorageProtection(1.9及以前版本为PVCProtection) 阻止删除正在使用的 PVC
●Releasing,Pod 释放 Volume 并删除 PVC
●Reclaiming,回收 PV,可以保留 PV 以便下次使用,也可以直接从云存储中删除

根据这 5 个阶段,PV 的状态有以下 4 种:
●Available(可用):表示可用状态,还未被任何 PVC 绑定
●Bound(已绑定):表示 PV 已经绑定到 PVC
●Released(已释放):表示 PVC 被删掉,但是资源尚未被集群回收
●Failed(失败):表示该 PV 的自动回收失败

//一个PV从创建到销毁的具体流程如下:
1、一个PV创建完后状态会变成Available,等待被PVC绑定。
2、一旦被PVC邦定,PV的状态会变成Bound,就可以被定义了相应PVC的Pod使用。
3、Pod使用完后会释放PV,PV的状态变成Released。
4、变成Released的PV会根据定义的回收策略做相应的回收工作。有

三种回收策略,Retain、Delete和Recycle

  • Retain就是保留现场,K8S集群什么也不做,等待用户手动去处理PV里的数据,处理完后,再手动删除PV。
  • Delete策略,K8S会自动删除该PV及里面的数据。对于动态配置的PV来说,默认回收策略为Delete。表示当用户删除对应的PVC时,动态配置的volume将被自动删除。
  • Recycle方式,K8S会将PV里的数据删除,然后把PV的状态变成Available,又可以被新的PVC绑定使用。(如果用户删除PVC,则删除卷上的数据,卷不会删除

查看pv的定义 

	apiVersion: v1kind: PersistentVolumemetadata:    #由于 PV 是集群级别的资源,即 PV 可以跨 namespace 使用,所以 PV 的 metadata 中不用配置 namespacename: spec#查看pv定义的规格
kubectl explain pv.spec    
spec:nfs:(定义存储类型)path:(定义挂载卷路径)server:(定义服务器名称)accessModes:(定义访问模型,有以下三种访问模型,以列表的方式存在,也就是说可以定义多个访问模式)- ReadWriteOnce          #(RWO)卷可以被一个节点以读写方式挂载。 ReadWriteOnce 访问模式也允许运行在同一节点上的多个 Pod 访问卷。- ReadOnlyMany           #(ROX)卷可以被多个节点以只读方式挂载。- ReadWriteMany          #(RWX)卷可以被多个节点以读写方式挂载。
#nfs 支持全部三种;iSCSI 不支持 ReadWriteMany(iSCSI 就是在 IP 网络上运行 SCSI 协议的一种网络存储技术);HostPath 不支持 ReadOnlyMany 和 ReadWriteMany。#新版本的k8s还增减了ReadWriteOncePod 表示可以与某一个pod进行绑定capacity:(定义存储能力,一般用于设置存储空间)storage: 2Gi (指定大小)storageClassName: (自定义存储类名称,此配置用于绑定具有相同类别的PVC和PV)persistentVolumeReclaimPolicy: Retain    #回收策略(Retain/Delete/Recycle)#Retain(保留):当用户删除与之绑定的PVC时候,这个PV被标记为released(PVC与PV解绑但还没有执行回收策略)且之前的数据依然保存在该PV上,但是该PV不可用,需要手动来处理这些数据并删除该PV。
#Delete(删除):删除与PV相连的后端存储资源。对于动态配置的PV来说,默认回收策略为Delete。表示当用户删除对应的PVC时,动态配置的volume将被自动删除。(只有 AWS EBS, GCE PD, Azure Disk 和 Cinder 支持)
#Recycle(回收):如果用户删除PVC,则删除卷上的数据,卷不会删除。(只有 NFS 和 HostPath 支持)

查看pvc的定义

kubectl explain pvc   #查看PVC的定义方式
KIND:     PersistentVolumeClaim
VERSION:  v1
FIELDS:apiVersion	<string>kind	<string>  metadata	<Object>spec	<Object>#PV和PVC中的spec关键字段要匹配,比如存储(storage)大小、访问模式(accessModes)、存储类名称(storageClassName)
kubectl explain pvc.spec
spec:accessModes: (定义访问模式,必须是PV的访问模式的子集)resources:requests:storage: (定义申请资源的大小)storageClassName: (定义存储类名称,此配置用于绑定具有相同类别的PVC和PV)

实操:静态创建pv的方式 实现pvc存储卷

步骤一:先完成nfs的目录共享,需要准备不同的目录

步骤二:编写配置文件,完成静态pv的创建,设置访问模式和资源大小等

apiVersion: v1
kind: PersistentVolume
metadata:name: pv001labels:name: pv001
spec:nfs:path: /opt/nfs/v1server: 192.168.20.10accessModes: ["ReadWriteMany","ReadWriteOnce"]capacity:storage: 1Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:name: pv002labels:name: pv002
spec:nfs:path: /opt/nfs/v2server: 192.168.20.10accessModes: ["ReadWriteOnce"]capacity:storage: 2Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:name: pv003labels:name: pv003
spec:nfs:path: /opt/nfs/v3server: 192.168.20.10accessModes: ["ReadWriteMany","ReadWriteOnce"]capacity:storage: 2Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:name: pv004labels:name: pv004
spec:nfs:path: /opt/nfs/v4server: 192.168.20.10accessModes: ["ReadWriteMany","ReadWriteOnce"]capacity:storage: 4Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:name: pv005labels:name: pv005
spec:nfs:path: /opt/nfs/v5server: 192.168.20.10accessModes: ["ReadWriteMany","ReadWriteOnce"]capacity:storage: 5Gi

步骤三:编写pvc创建配置文件,完成创建,查看是否与pv绑定

apiVersion: v1
kind: PersistentVolumeClaim
metadata:name: mypvc #定义pvc的名称namespace: default
spec:accessModes: ["ReadWriteMany"]resources:requests:storage: 2Gi
---
apiVersion: v1
kind: Pod
metadata:name: pod-vol-pvcnamespace: default
spec:containers:- name: myappimage: soscscs/myapp:v1volumeMounts:- name: html #与下面定义的存储卷名称一致mountPath: /usr/share/nginx/htmlvolumes:- name: html  #定义的是pvc的名称persistentVolumeClaim:claimName: mypvc #通过名称调用定义的pvc

 

步骤四:基于pvc存储卷创建pod

静态创建PV的步骤:
1)准备好存储设备和共享目录
2)准备创建PV资源的配置文件,定义访问模式(ReadWriteOnce、ReadOnlyMany、ReadWriteMany、ReadWriteMany)、存储空间大小、回收策略(Retain、Recycle、Delete)、存储设备类型、storageClassName等
3)准备创建PVC资源的配置文件,定义访问模式(必要条件,必须是PV支持的访问模式)、存储空间大小(默认就近选择大于等于指定大小的PV)、storageClassName等来绑定PV
4)创建Pod资源挂载PVC存储卷,定义卷类型为persistentVolumeClaim,并在容器配置中定义存储卷挂载点路径 

实操:基于nfs存储卷插件动态创建pv,实现pvc存储卷

搭建 StorageClass + nfs-client-provisioner ,实现 NFS 的动态 PV 创建

Kubernetes 本身支持的动态 PV 创建不包括 NFS,所以需要使用外部存储卷插件分配PV。详见:https://kubernetes.io/zh/docs/concepts/storage/storage-classes/

卷插件称为 Provisioner(存储分配器),NFS 使用的是 nfs-client,这个外部卷插件会使用已经配置好的 NFS 服务器自动创建 PV。
Provisioner:用于指定 Volume 插件的类型,包括内置插件(如 kubernetes.io/aws-ebs)和外部插件(如 external-storage 提供的 ceph.com/cephfs)。

步骤一:完成nfs共享准备

步骤二:创建 Service Account,用来管理 NFS Provisioner 在 k8s 集群中运行的权限,设置 nfs-client 对 PV,PVC,StorageClass 等的规则

#创建service Account 账户,用来管理 NFS Provisioner 在 k8s 集群中运行的权限
metadata:name: nfs-client-provisioner
---
#创建集群角色
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:name: nfs-client-provisioner-clusterrole
rules:- apiGroups: [""]resources: ["persistentvolumes"]verbs: ["get", "list", "watch", "create", "delete"]- apiGroups: [""]resources: ["persistentvolumeclaims"]verbs: ["get", "list", "watch", "update"]- apiGroups: ["storage.k8s.io"]resources: ["storageclasses"]verbs: ["get", "list", "watch"]- apiGroups: [""]resources: ["events"]verbs: ["list", "watch", "create", "update", "patch"]- apiGroups: [""]resources: ["endpoints"]verbs: ["create", "delete", "get", "list", "watch", "patch", "update"]
---
#集群角色绑定
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:name: nfs-client-provisioner-clusterrolebinding
subjects:
- kind: ServiceAccountname: nfs-client-provisionernamespace: default
roleRef:kind: ClusterRolename: nfs-client-provisioner-clusterroleapiGroup: rbac.authorization.k8s.io

 

步骤三:使用 Deployment 来创建 NFS Provisioner

NFS Provisioner(即 nfs-client),有两个功能:一个是在 NFS 共享目录下创建挂载点(volume),另一个则是将 PV 与 NFS 的挂载点建立关联。

#由于 1.20 版本启用了 selfLink,所以 k8s 1.20+ 版本通过 nfs provisioner 动态生成pv会报错,解决方法如下:
vim /etc/kubernetes/manifests/kube-apiserver.yaml
spec:
  containers:
  - command:
    - kube-apiserver
    - --feature-gates=RemoveSelfLink=false       #添加这一行
    - --advertise-address=192.168.20.30
......

 接下来以deployment的方式创建nfs的存储插件

kind: Deployment
apiVersion: apps/v1
metadata:name: nfs-client-provisioner
spec:replicas: 1selector:matchLabels:app: nfs-client-provisionerstrategy:type: Recreatetemplate:metadata:labels:app: nfs-client-provisionerspec:serviceAccountName: nfs-client-provisioner          #指定Service Account账户containers:- name: nfs-client-provisionerimage: quay.io/external_storage/nfs-client-provisioner:latestimagePullPolicy: IfNotPresentvolumeMounts:- name: nfs-client-rootmountPath: /persistentvolumesenv:- name: PROVISIONER_NAMEvalue: nfs-storage       #配置provisioner的Name,确保该名称与StorageClass资源中的provisioner名称保持一致- name: NFS_SERVERvalue: 192.168.20.10           #配置绑定的nfs服务器- name: NFS_PATHvalue: /opt/k8s          #配置绑定的nfs服务器目录volumes:              #申明nfs数据卷- name: nfs-client-rootnfs:server: 192.168.20.10path: /opt/k8s

 步骤四:创建 StorageClass,负责建立 PVC 并调用 NFS provisioner 进行预定的工作,并让 PV 与 PVC 建立关联

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:name: nfs-client-storageclass
provisioner: nfs-storage     #这里的名称要和provisioner配置文件中的环境变量PROVISIONER_NAME保持一致
parameters:archiveOnDelete: "false"   #false表示在删除PVC时不会对数据目录进行打包存档,即删除数据;为ture时就会自动对数据目录进行打包存档,存档文件以archived开头

 

步骤五:创建pvc存储卷以及创建pod测试

apiVersion: v1
kind: PersistentVolumeClaim
metadata:name: test-nfs-pvc#annotations: volume.beta.kubernetes.io/storage-class: "nfs-client-storageclass"     #另一种SC配置方式
spec:accessModes:- ReadWriteManystorageClassName: nfs-client-storageclass    #关联StorageClass对象resources:requests:storage: 1Gi
---
apiVersion: v1
kind: Pod
metadata:name: test-storageclass-pod
spec:containers:- name: busyboximage: busybox:latestimagePullPolicy: IfNotPresentcommand:- "/bin/sh"- "-c"args:- "sleep 3600"volumeMounts:- name: nfs-pvcmountPath: /mntrestartPolicy: Nevervolumes:- name: nfs-pvcpersistentVolumeClaim:claimName: test-nfs-pvc      #与PVC名称保持一致

 

 验证

 六、总结

动态创建PV的步骤:
1)准备好存储设备和共享目录
2)如果是外置存储卷插件,需要先创建serviceaccount账户(Pod使用访问apiserver使用的账户)和RBAC授权(创建角色授予相关资源对象的操作权限,再将账户与角色绑定),使得serviceaccount账户具有对PV、PVC、StorageClass等资源的操作权限
3)准备创建外置存储插件Pod资源的配置文件(外置存储插件在k8s集群中以pod形式运行),定义serviceaccount账户作为Pod的用户,并设置相关的环境变量(比如存储插件名称等)
4)创建StorageClass资源,provisioner要设置为存储插件名称
------------------------以上操作是一劳永逸的,

之后只需要创建PVC资源引用StorageClass就可以自动调用存储卷插件动态创建PV资源

------------------------
5)准备创建PVC资源的配置文件,定义访问模式、存储空间大小、storageClassName设置为StorageClass资源名称等来动态创建PV资源并绑定PV
6)创建Pod资源挂载PVC存储卷,定义卷类型为persistentVolumeClaim,并在容器配置中定义存储卷挂载点路径

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/513409.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript的`call`方法:实现函数间的调用!

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

plc远程锁机网关,远程锁机与防拆功能双重保障

在设备租赁和分期购买领域&#xff0c;如何确保设备的安全与资金的回收一直是各大厂家和卖家关注的重点。传统的锁机方式往往需要人工介入&#xff0c;不仅效率低下&#xff0c;而且成本高昂。如今&#xff0c;借助HiWoo Box的远程锁机功能&#xff0c;这些问题将迎刃而解。 什…

蓝海资讯|网红老阳推荐的视频号带货项目怎么样?

在当今社会&#xff0c;随着互联网的快速发展&#xff0c;网红经济已经成为一个热门的话题。在这个背景下&#xff0c;许多人都想通过加入网红行业来实现自己的财富自由。其中&#xff0c;网红老阳推荐的视频号带货项目引起了广泛关注。但是&#xff0c;这个项目是否真的如想象…

鸿蒙Harmony应用开发—ArkTS声明式开发(通用属性:点击回弹效果)

设置组件点击时回弹效果。 说明&#xff1a; 从API Version 10开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 clickEffect clickEffect(value: ClickEffect | null) 设置当前组件点击回弹效果。 系统能力&#xff1a; SystemCapabilit…

左手WPS右手Eversheet,金山系办公软件不惧微软,迎接国内新生态

众所周知&#xff0c;技术架构的每一次翻新&#xff0c;都会引发产业的剧变。 在过去几年里&#xff0c;诸如办公软件、数据库及操作系统等基础软件&#xff0c;在传统架构的束缚下&#xff0c;国内企业几乎无法与外企并驾齐驱&#xff0c;更别提领先了。然而&#xff0c;在移…

python基础——基础语法

文章目录 一、基础知识1、字面量2、常用值类型3、注释4、输入输出5、数据类型转换6、其他 二、字符串拓展1、字符串定义2、字符串拼接3、字符串格式化4、格式化精度控制 三、条件/循环语句1、if2、while3、for循环 四、函数1、函数定义2、函数说明文档3、global关键字 五、数据…

深入了解 Android 中的 RelativeLayout 布局

RelativeLayout 是 Android 中常用的布局之一&#xff0c;它允许开发者基于子视图之间的相对位置来排列界面元素。在这篇博客中&#xff0c;我们将详细介绍 RelativeLayout 的各种属性&#xff0c;并提供代码示例和解释。 第一个示例 <RelativeLayoutandroid:layout_width…

数据分类分级场景建设思路

数据分类分级是数据安全治理实践过程中的关键场景&#xff0c;是数据安全工作的桥头堡和必选题。本指南结合行业实践&#xff0c;提出如下图 所示的七步走建设思路&#xff0c;可供刚开展数据分类分级工作的组织参考。 来源&#xff1a;中国信息通信研究院 数据分类分级“七步…

VMwareWorkstation17.0虚拟机搭建Windows 98虚拟机(完整安装步骤详细图文教程)

VMwareWorkstation17.0虚拟机搭建Windows 98虚拟机&#xff08;完整安装步骤详细图文教程&#xff09; 前言1.当年古董是啥样的?2.当年玩啥游戏&#xff1f;TOP1 星际争霸TOP2 红警TOP3 仙剑奇侠传其他游戏 3.Windows 98安装准备工作3.1 Windows 98下载地址3.2 DOS软盘版下载地…

算法学习03:前缀和与差分(互逆)

算法学习03&#xff1a;前缀和与差分&#xff08;互逆&#xff09; 文章目录 算法学习03&#xff1a;前缀和与差分&#xff08;互逆&#xff09;前言一、前缀和1.一维2.二维 二、差分1.一维在这里插入图片描述2.二维在这里插入图片描述 ![在这里插入图片描述](https://img-blog…

Java 解决异步 @Async 失效问题

1.问题描述 使用Async进行异步处理时&#xff0c;异步没有生效 2.原因分析 经过排查后发现是因为使用Async的方法没有跨2个Service导致的 错误示例 控制器接口 > 直接调用 custAdminService.importCBuy() 3.解决方案 Controller接口不变&#xff0c;多添加一层Service&a…

1.Zookeeper理论基础

1.Zookeeper的基本概念 是一个分布式应用协调框架 &#xff0c;java编写的。客户端 /服务端 的架构模式。CP设计(一致性&#xff0c;分区容错) 它主要是用来解决分布式应用中经常遇到的一些数据管理问题&#xff0c;如&#xff1a;服务注册服务、状态同步服务、集群管理、分布…