经典语义分割(二)医学图像分割模型UNet

经典语义分割(二)医学图像分割模型UNet

  • 我们之前介绍了全卷积神经网络( FCN) ,FCN是基于深度学习的语义分割算法的开山之作。

  • 今天我们介绍另一个语义分割的经典模型—UNet,它兼具轻量化与高性能,通常作为语义分割任务的基线测试模型,至今仍是如此。

  • UNet从本质上来说也属于一种全卷积神经网络模型,它的取名来源于其架构形状:模型整体呈现U形

    • 它原本是为了解决医疗影像语义分割问题的。在2015年的ISBI细胞跟踪挑战赛中,Ronnebreger等人利用UNet网络以较大优势赢得比赛。
      • 由于隐私问题、注释过程的复杂性、专家技能要求以及使用生物医学成像系统拍摄图像的高价格,在生物医学任务中,收集大量的数据很困难。
      • 而UNet能够在小样本数据集上训练并取得优秀成绩,因此各种基于其改进的网络模型广泛运用于医学图像分割任务中。特别是在肺结节、视网膜血管、皮肤病以及颅内肿瘤四大医学分割领域,出现了大量基于U-Net 改进的模型。
    • 下面几点或许能够解释为何UNet在医疗影像上表现突出:
      • UNet的U形网络结构密集融合了浅层特征与深层特征;
      • 医疗影像数据量与UNet模型体量上相匹配,有效避免了过拟合;
      • 医疗影像结构简单且固定,具有较低语义信息。
    • 不过,之后几年的发展,也证实了它是语义分割任务中的全能选手。
  • 论文地址:U-Net: Convolutional Networks for Biomedical Image Segmentation

1 UNet网络

1.1 UNet网络简述

UNet网络结构如下图所示,最主要的两个特点是:U型网络结构和Skip Connection跳层连接。

  • Unet通过跳接的U形网络结构结合了浅层特征与深层特征,用于最后的语义分割图生成。

    • 与FCN不同的是,UNet以拼接方式来结合浅层特征与深层特征;
    • 而FCN则是以相加方式来结合浅层特征与深层特征;
  • U形网络架构能够更充分地融合浅层特征和深层特征,这也是UNet性能优于FCN的主要原因。

    • 浅层特征图更倾向于表达例如点、线、边缘轮廓等基本特征单元;蕴含的空间信息更多。

    • 深层特征图更倾向于表达图像的语义信息;蕴含的空间信息更少,语义特征更多。

在这里插入图片描述

1.2 网络架构详解

UNet的主干分为对称的左右两部分:

  • 左边为特征提取网络(编码器,encoder),原始输入图像通过卷积-最大池化进行四次下采样,获得四层级的特征图;

  • 右边为特征融合网络(解码器,decoder),各层级特征图与经过反卷积获得的特征图通过跳接方式进行特征融合;

  • 最后一层通过与标签计算损失进行语义图预测。

1.2.1 DoubleConv模块

  • 从UNet网络中可以看出,不管是下采样过程还是上采样过程,每一层都会连续进行两次卷积操作,这种操作在UNet网络中重复很多次,可以单独写一个DoubleConv模块

    • 如下图所示,in_channels设为1,out_channels为64。
    • 输入图片大小为572×572,经过步长为1,padding为0的3×3卷积(注意原文没有进行填充),因此得到feature map为570×570,而非572×572,再经过一次卷积得到568×568的feature map。
    import torch.nn as nnclass DoubleConv(nn.Module):"""(convolution => [BN] => ReLU) * 2"""def __init__(self, in_channels, out_channels):super().__init__()self.double_conv = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=0),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True),nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=0),nn.BatchNorm2d(out_channels),nn.ReLU(inplace=True))def forward(self, x):return self.double_conv(x)
    

在这里插入图片描述

1.2.2 Down模块

UNet网络一共有4次下采样过程,模块化代码如下:

  • Down模块先进行一个最大化池化,将高宽减半
  • 然后接一个DoubleConv模块,让通道加倍
  • 至此,UNet网络的左半部分的下采样过程的代码都写好了,接下来是右半部分的上采样过程
class Down(nn.Module):"""Downscaling with maxpool then double conv"""def __init__(self, in_channels, out_channels):super().__init__()self.maxpool_conv = nn.Sequential(nn.MaxPool2d(2),DoubleConv(in_channels, out_channels))def forward(self, x):return self.maxpool_conv(x)

在这里插入图片描述

1.2.3 Up模块

  • Up模块除了常规的上采样操作,还有进行特征的融合。
  • UP模块定义了两种方法:Upsample和ConvTranspose2d,即双线性插值反卷积
  • 在forward前向传播函数中,x1接收的是上采样的数据,x2接收的是特征融合的数据。特征融合方法就是先对小的feature map进行padding,再进行concat。
  • 注意:在下面代码中,上采样后会进行padding,和左边encoder相应的feature map的高宽一致,这点和图中不一样。
class Up(nn.Module):def __init__(self, in_channels, out_channels, bilinear=True):super(Up, self).__init__()if bilinear:self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)else:self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)self.conv = DoubleConv(in_channels, out_channels)def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:x1 = self.up(x1)# [N, C, H, W]diff_y = x2.size()[2] - x1.size()[2]diff_x = x2.size()[3] - x1.size()[3]# padding_left, padding_right, padding_top, padding_bottomx1 = F.pad(x1, [diff_x // 2, diff_x - diff_x // 2,diff_y // 2, diff_y - diff_y // 2])x = torch.cat([x2, x1], dim=1)x = self.conv(x)return x

1.2.4 OutConv模块

  • 用上述的DoubleConv模块、Down模块、Up模块就可以拼出UNet的主体网络结构了。

  • UNet网络的输出需要根据分割数量,整合输出通道。

  • 下图展示的是分类为2的情况

在这里插入图片描述

class OutConv(nn.Module):def __init__(self, in_channels, out_channels):super(OutConv, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)def forward(self, x):return self.conv(x)

1.2.5 UNet网络构建

import torch
import torch.nn as nn
import torch.nn.functional as F
# pip install torchinfo
from torchinfo import summaryclass UNet(nn.Module):def __init__(self, n_channels, n_classes, bilinear=False):super(UNet, self).__init__()self.n_channels = n_channelsself.n_classes = n_classesself.bilinear = bilinearself.inc = DoubleConv(n_channels, 64)self.down1 = Down(64, 128)self.down2 = Down(128, 256)self.down3 = Down(256, 512)self.down4 = Down(512, 1024)self.up1 = Up(1024, 512, bilinear)self.up2 = Up(512, 256, bilinear)self.up3 = Up(256, 128, bilinear)self.up4 = Up(128, 64, bilinear)self.outc = OutConv(64, n_classes)def forward(self, x):x1 = self.inc(x)x2 = self.down1(x1)x3 = self.down2(x2)x4 = self.down3(x3)x5 = self.down4(x4)x = self.up1(x5, x4)x = self.up2(x, x3)x = self.up3(x, x2)x = self.up4(x, x1)logits = self.outc(x)return logitsif __name__ == '__main__':net = UNet(n_channels=1, n_classes=1)summary(model=net, input_size=(1, 1, 572, 572))
===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
UNet                                          [1, 1, 564, 564]          --
├─DoubleConv: 1-1                             [1, 64, 568, 568]         --
│    └─Sequential: 2-1                        [1, 64, 568, 568]         --
│    │    └─Conv2d: 3-1                       [1, 64, 570, 570]         640
│    │    └─BatchNorm2d: 3-2                  [1, 64, 570, 570]         128
│    │    └─ReLU: 3-3                         [1, 64, 570, 570]         --
│    │    └─Conv2d: 3-4                       [1, 64, 568, 568]         36,928
│    │    └─BatchNorm2d: 3-5                  [1, 64, 568, 568]         128
│    │    └─ReLU: 3-6                         [1, 64, 568, 568]         --
├─Down: 1-2                                   [1, 128, 280, 280]        --
│    └─Sequential: 2-2                        [1, 128, 280, 280]        --
│    │    └─MaxPool2d: 3-7                    [1, 64, 284, 284]         --
│    │    └─DoubleConv: 3-8                   [1, 128, 280, 280]        221,952
├─Down: 1-3                                   [1, 256, 136, 136]        --
│    └─Sequential: 2-3                        [1, 256, 136, 136]        --
│    │    └─MaxPool2d: 3-9                    [1, 128, 140, 140]        --
│    │    └─DoubleConv: 3-10                  [1, 256, 136, 136]        886,272
├─Down: 1-4                                   [1, 512, 64, 64]          --
│    └─Sequential: 2-4                        [1, 512, 64, 64]          --
│    │    └─MaxPool2d: 3-11                   [1, 256, 68, 68]          --
│    │    └─DoubleConv: 3-12                  [1, 512, 64, 64]          3,542,016
├─Down: 1-5                                   [1, 1024, 28, 28]         --
│    └─Sequential: 2-5                        [1, 1024, 28, 28]         --
│    │    └─MaxPool2d: 3-13                   [1, 512, 32, 32]          --
│    │    └─DoubleConv: 3-14                  [1, 1024, 28, 28]         14,161,920
├─Up: 1-6                                     [1, 512, 60, 60]          --
│    └─ConvTranspose2d: 2-6                   [1, 512, 56, 56]          2,097,664
│    └─DoubleConv: 2-7                        [1, 512, 60, 60]          --
│    │    └─Sequential: 3-15                  [1, 512, 60, 60]          7,080,960
├─Up: 1-7                                     [1, 256, 132, 132]        --
│    └─ConvTranspose2d: 2-8                   [1, 256, 120, 120]        524,544
│    └─DoubleConv: 2-9                        [1, 256, 132, 132]        --
│    │    └─Sequential: 3-16                  [1, 256, 132, 132]        1,771,008
├─Up: 1-8                                     [1, 128, 276, 276]        --
│    └─ConvTranspose2d: 2-10                  [1, 128, 264, 264]        131,200
│    └─DoubleConv: 2-11                       [1, 128, 276, 276]        --
│    │    └─Sequential: 3-17                  [1, 128, 276, 276]        443,136
├─Up: 1-9                                     [1, 64, 564, 564]         --
│    └─ConvTranspose2d: 2-12                  [1, 64, 552, 552]         32,832
│    └─DoubleConv: 2-13                       [1, 64, 564, 564]         --
│    │    └─Sequential: 3-18                  [1, 64, 564, 564]         110,976
├─OutConv: 1-10                               [1, 1, 564, 564]          --
│    └─Conv2d: 2-14                           [1, 1, 564, 564]          65
===============================================================================================
Total params: 31,042,369
Trainable params: 31,042,369
Non-trainable params: 0
Total mult-adds (G): 233.39
===============================================================================================
Input size (MB): 1.31
Forward/backward pass size (MB): 2683.30
Params size (MB): 124.17
Estimated Total Size (MB): 2808.78
===============================================================================================

2 针对UNet模型结构的改进

2.1 和transformers结合

在这里插入图片描述

2.2 概率设计

在这里插入图片描述

2.1.3 丰富表示增强

在这里插入图片描述

2.4 主干设计增强

在这里插入图片描述

2.5 跳过连接增强

在这里插入图片描述

2.6 bottleneck增强

在这里插入图片描述

以上改进总结来自这篇综述,感兴趣的可以参考:Medical Image Segmentation Review: The success of U-Net

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/519618.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

hdu-2059(dp)

hdu-2059 龟兔赛跑 dp[i] 表示到第i个站所花费的最少时间,t[j][k]表示在第j个站充满电,直接开到第k个站所花的时间,那么状态转移为: dp[i] min(dp[i], dp[j] t[j][i]) 含义为,假设我们当前想知道到达第i个站的最少时间&#xff…

Java定时调度范式定时操作

在 Java 中,我们可以使用各种方法来执行定时操作。这些操作包括执行任务、调度任务、执行重复任务等。下面将介绍几种常见的 Java 定时调度范式。 1. Timer 和 TimerTask Java 提供了 Timer 和 TimerTask 类,用于执行定时任务。 示例代码:…

RK3568平台 USB数据包的收发格式

一.USB硬件拓扑结构 compound device :多个设备组合起来,通过HUB跟Host相连composite device :一个物理设备有多个逻辑设备(multiple interfaces) 在软件开发过程中,我们可以忽略Hub的存在,硬件拓扑图简化如下&#x…

【精品】集合list去重

示例一&#xff1a;对于简单类型&#xff0c;比如String public static void main(String[] args) {List<String> list new ArrayList< >();list.add("aaa");list.add("bbb");list.add("bbb");list.add("ccc");list.add(…

【蓝桥杯基础算法】dfs(上)组合数,全排列

刚接触算法&#xff0c;有没有被递归又循环的dfs吓到&#xff1f;没关系&#xff0c;几个例题就可以彻底掌握&#xff01; 1.全排列 1-n的全排列,如输入3&#xff0c;按顺序对1-3进行排列 //枚举 #include<iostream> #include<algorithm> #include<cstring>…

Unity UGUI之Slider基本了解

在Unity中&#xff0c;Slider&#xff08;滑动条&#xff09;是一种常用的用户界面控件之一&#xff0c;允许用户通过拖动滑块来选择一个数值。常常应用于调节数值&#xff08;如调节音量、亮度、游戏难度等&#xff09;、设置选项等。 以下是Slider的基本信息和用法: 1、创建…

WPS/Office 好用的Word插件-查找替换

例如&#xff1a;一片文档&#xff1a;…………泰山…………泰&#xff08;少打了山字&#xff09;………… 要是把“泰”查找替换为“泰山”&#xff0c;就会把前面的“泰山”变成“泰山山”&#xff0c;这种问题除了再把“泰山山”查找替换为“泰山”&#xff0c;有没有更简单…

SAR ADC学习笔记(4)

CDAC电容阵列 一、电容失配 二、电容失配对CDAC线性度的影响 1.电容失配对DNL的影响 2.电容失配对INL的影响 三、分段结构的CDAC 四、CDAC开关切换方案&#xff1a;传统开关切换策略 第一次比较阶段&#xff1a;如果VP(1)-VN(1)<0 第一次比较阶段&#xff1a;如果VP(1)-VN…

opengl 学习(三)-----着色器

着色器 分类demo效果解析教程 分类 OPengl C demo #include "glad/glad.h" #include "glfw3.h" #include <iostream> #include <cmath> #include <vector>#include <string> #include <fstream> #include <sstream>…

主语补足语SC【语法笔记】

1.主语补足语的作用是什么 2.主语补足语与宾语补足语的区别与联系是什么 3.see do 与 doing &#xff0c;在进行主补与宾补互换时候&#xff0c;不同点是什么 4.主语补足语由什么构成 5.例题

Mybatis-Plus Mapper映射文件使用

介绍 MyBatis 的真正强大在于它的语句映射&#xff0c;这是它的魔力所在。由于它的异常强大&#xff0c;映射器的 XML 文件就显得相对简单。如果拿它跟具有相同功能的 JDBC 代码进行对比&#xff0c;你会立即发现省掉了将近 95% 的代码。MyBatis 致力于减少使用成本&#xff0…

T01类加载机制

类加载机制 类加载运行全过程 当我们用java命令运行某个类的main函数启动程序时&#xff0c;首先需要通过类加载器把主类加载到JVM public class Math {public static final int initData 666;public static User user new User();public int compute() {int a 1;int b …