【MATLAB第98期】基于MATLAB的MonteCarlo蒙特卡罗结合kriging克里金代理模型的全局敏感性分析模型【更新中】

【MATLAB第98期】基于MATLAB的Monte Carlo蒙特卡罗结合kriging克里金代理模型的全局敏感性分析模型【更新中】


PS:因内容涉及较多,所以一时半会更新不完
后期会将相关原理,以及多种功能详细介绍。
麻烦点赞收藏,及时获取更新消息。

引言

在前面几期,介绍了局部敏感性分析法和sobol全局敏感性分析模型,本期介绍基于kriging克里金模型的GSA全局敏感性分析方法。

往期文章:

【MATLAB第31期】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理回归问题MATLAB代码实现(持续更新)
【MATLAB第32期】【更新中】基于MATLAB的降维/全局敏感性分析/特征排序/数据处理分类问题MATLAB代码实现
【MATLAB第63期】基于MATLAB的改进敏感性分析方法IPCC,拥挤距离与皮尔逊系数法结合实现回归与分类预测
【MATLAB第64期】【保姆级教程】基于MATLAB的SOBOL全局敏感性分析模型运用(含无目标函数,考虑代理模型)

一、Kriging克里金模型

克里金模型讲解参考博主:
steelDK
傻傻虎虎

克里金(Kriging)模型是一种基于空间相关性的插值方法,通过建立半变异函数来描述空间相关性,并利用已知观测点的数值和空间位置来预测未知点的数值。常用于地质、地理和环境科学等领域。
克里金模型的基本原理是通过建立半变异函数来描述空间相关性。半变异函数可以测量两个点之间的相似性程度,它表示两个点之间的数值差异随距离增加而变化的速率。常见的半变异函数包括指数模型、高斯模型和球模型等。克里金模型在应用时有如下假设条件:
(1)、克里金法假设所有数据之间都服从n维的正态分布。
(2)、无偏。
————————————————

克里金模型优点:
1.精度高
Kriging模型通过对已有数据的空间相关性进行建模,能够较准确地估计未观测点的数值,尤其适用于连续变量的插值。
2.不受外部影响
Kriging模型不仅仅依赖于周围点的数值,还考虑了点之间的空间相关性。因此,它对异常值和局部波动有较好的免疫性,能够提供相对稳定的估计结果。
3.提供不确定性估计
Kriging模型不仅能够给出点估计值,还能给出估计的不确定性。通过计算协方差函数,可以得到预测值的方差和置信区间,提供了对预测结果的可靠性评估。

克里金模型缺点:
1.数据需满足空间相关性
Kriging模型的建立基于变量的空间相关性,因此,如果数据的空间相关性很弱或不存在,模型可能不适用。此外,Kriging模型对于大数据量的计算需求较高。
2.对模型参数的选择敏感
Kriging模型的结果受到模型参数的影响,包括半方差函数的参数和拟合方法等。选择合适的参数值对于结果的准确性很重要,但也较为困难。
3.不适用于非线性插值
Kriging模型是一种线性插值方法,对于非线性、非正态的数据拟合效果较差。在这种情况下,可能需要使用其他插值方法。
4.计算复杂度较高
Kriging模型在进行预测时需要计算协方差矩阵的逆矩阵,这一过程的计算复杂度较高,尤其是当数据量较大时会增加计算的困难度。

二、蒙特卡洛模拟

(1)评价指标

评价指标包括:一阶影响指数S,总效应指数ST**

*一阶影响指数S:*显示由各个输入变量的方差产生的因变量的方差,根据一阶影响指数可以量化单个变量对模型的敏感程度

总效应指数ST:显示由每个输入变量的方差及其与其他输入变量的相互作用而产生的因变量的方差。

(2)参数

使用MCGSA函数蒙特卡罗进行全局灵敏度分析,即使用蒙特卡罗模拟计算个体效应和总效应(仿照Sobol方差计算)。其中,四个参数包括(func、str、bounds、npop):
输入参数:

  1. func是代理结构
  2. str是字符串标识代理项
  3. bounds是定义用于拟合代理项的输入空间的矩阵(第一行和第二行分别是下限和上限)
  4. npop是蒙特卡罗样本的数量(npop一般大于5000)

输出参数:

  1. output是指分析结果(结构变量):

其中,individual :个体效应矩阵结构(一阶影响指数S)
total:总效应矩阵结构(总效应指数ST)。

三、全局敏感性分析(有目标函数)

VarMin=[0 0 0];%各个参数下限
VarMax=[10  10 10];%各个参数上限
bounds=[VarMin;VarMax]% 创建DoEdim       = 3;% 优化变量数量numpop = 20;%采样点个数,也就是参数水平数 ,取大了好,比如4000,但慢X = lhsdesign(numpop, dim);% 拉丁超立方抽样%X= sobolset(dim);%或者参考64期sobol抽样方法。 % 目标函数响应
for i=1:numpopY(i,:) = myfun(X(i,:)); %
end

A、设定目标函数(3个变量,即维度D=3)
Y=X1^2+2*X2+X3-1

y=x(1)^2+2*x(2)+x(3)-1;

B、设定变量上下限

VarMin=[0 0 0];%各个参数下限
VarMax=[10  10 10];%各个参数上限

C、建立克里金模型

训练集输入输出建立:

X = lhsdesign(numpop, dim);% 拉丁超立方抽样%X= sobolset(dim);%或者参考64期sobol抽样方法。 % 目标函数响应
for i=1:numpopY(i,:) = myfun(X(i,:)); %
end

模型拟合:

opt  = krigingtrain(X, Y);kopt = krigingfit(opt );

D、设定MC参数

npop = 200; %蒙特卡罗模拟的点数
% 创建A矩阵
Xa = rand(npop, dim);
Xa = SV(Xa, [zeros(1,dim); ones(1,dim)], Xa);% 创建B矩阵
Xb = rand(npop, dim);
Xb = SV(Xb, [zeros(1,dim); ones(1,dim)], Xa);

E、GSA分析

output = MCGSA(func, str, Xa, Xb)

一阶影响指数S值、总效应指数ST值计算公式:

在这里插入图片描述
var方差函数为matlab自带

绘图:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/520350.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Go编程实战:高效利用encoding/binary进行数据编解码

Go编程实战:高效利用encoding/binary进行数据编解码 引言encoding/binary 包核心概念ByteOrder 接口Binary 数据类型的处理处理复杂数据结构 基础使用教程数据类型与二进制格式的映射基本读写操作写操作 - binary.Write读操作 - binary.Read 错误处理 高级功能与技巧…

定时执行专家V7.1 多国语言版本日文版发布 - タスク自動実行ツールV7.1 日本語版リリース

◆ 软件介绍  ソフトの紹介 《定时执行专家》是一款制作精良、功能强大、毫秒精度、专业级的定时任务执行软件。软件具有 25 种【任务类型】、12 种【触发器】触发方式,并且全面支持界面化【Cron表达式】设置。软件采用多线程并发方式检测任务触发和任务执行&…

CentOS7 Sqoop 1.4.7 安装 (Hadoop 3.3.0)

CentOS7 Sqoop 1.4.7 安装 (Hadoop 3.3.0) 1、 Sqoop 1.4.7 官网链接下载: https://archive.apache.org/dist/sqoop/1.4.7/ 2、把压缩包用mobaxterm拖到 /tools文件夹 3、解压 tar -zvxf /tools/sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz -C /training/4、进入 /t…

基于深度学习的交通标志检测识别系统(含UI界面、yolov8、Python代码、数据集)

项目介绍 项目中所用到的算法模型和数据集等信息如下: 算法模型:     yolov8 yolov8主要包含以下几种创新:         1. 添加注意力机制(SE、CBAM等)         2. 修改可变形卷积(DySnake-主干c…

moi3D安装

下载文件双击文件 下一步 同意下一步 下一步 下一步 下一步 安装下一步 完成 破解 将如图中的文件复制到文件目录下 汉化 在目录中进入ui文件夹下 在安装包中找到如下的文件复制到ui目录下 在打开 另存为 另存为时改一下编码格式如图 打开软件 找到如图options进入…

蓝牙 | 软件: Qualcomm BT Audio 问题分析(4)----检查MIPS使用情况

大家好! 我是“声波电波还看今朝”成员的一位FAE Devin.wen,欢迎大家关注我们的账号。 今天给大家大概讲解“如何排查Qualcomm BT Audio”的疑难杂症(四):MIPS检查。 如果大家还没有注册我们大大通的账号&#xff0c…

Spring AOP(二) — 底层组件

Spring AOP 是通过动态代理的方式来实现,主要是通过Pointcut、Advice、Advisor及ProxyFactoryBean 等接口来创建代理对象。 在IoC容器中,Advice 是一个bean(这样可以在通知中使用其他的bean),而Pointcut虽然不是一个B…

YOLO v1讲解

YOLO是最经典的一阶目标检测框架,记录一下v1思路。 整体流程 输入数据一张 448 448 3 448 \times 448 \times 3 4484483 的图片,切分成 7 7 7 \times 7 77 的网格将图片经过多层CNN,下采样得到 7 7 30 7 \times 7 \times 30 7730 的f…

JVM-对象创建与内存分配机制深度剖析 3

JVM对象创建过程详解 类加载检查 虚拟机遇到一条new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个 符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。 new…

在分布式环境中使用状态机支持数据的一致性

简介 在本文中,我们将介绍如何在分布式系统中使用transaction以及分布式系统中transaction的局限性。然后我们通过一个具体的例子,介绍了一种通过设计状态机来避免使用transaction的方法。 什么是数据库transaction Transaction是关系型数据普遍支持的…

Threejs着色器(GPU)编程——感温管网

管网,作为支撑现代城市运转的重要基础设施,是隐藏在地面之下的庞大工程网络。这些管网如同城市的血脉,负责输送各种必要的资源,如水源、热力、燃气等,同时排除废水和其他废弃物。然而,由于其位于地下,人们往往难以直接感知其存在和运行状态。为了保障这些地下管网的安全…

现货白银实时行情的简单和复杂的判断

投资者要进行现货白银实时行情的判断,就需要有一个判断原则或者判断的系统。而这个判断的基础,有所谓的简单判断和复杂判断。那现货白银实时行情的简单和复杂的判断有何区别呢? 先说一下简单判断。现货白银实时行情的简单判断,主要…