【算法 高级数据结构】树状数组:一种高效的数据结构(一)

🚀个人主页:为梦而生~ 关注我一起学习吧!
💡专栏:算法题、 基础算法~赶紧来学算法吧
💡往期推荐
【算法基础 & 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理)
【算法基础】深搜


文章目录

  • 1 引言
    • 1.1 树状数组的概念
    • 1.2 树状数组的应用场景
  • 2 基础知识
    • 2.1 二进制索引的概念和性质
    • 2.2 前缀和的概念和计算
  • 3 树状数组的定义和数学推导
    • 3.1 通俗易懂的解释什么是树状数组※
    • 3.2 树状数组的数学推导※


1 引言

1.1 树状数组的概念

树状数组(Binary Indexed Tree,BIT)是一种数据结构,用于高效地处理数组的动态查询和更新操作。它可以在O(log n)的时间复杂度内完成单点更新和前缀和查询操作。树状数组常用于解决数组频繁更新和查询前缀和的问题,比如求解逆序对、区间和等。

在这里插入图片描述

1.2 树状数组的应用场景

  1. 动态查询问题:树状数组非常适用于需要动态查询某个区间内元素和的场景。
  2. 频繁更新问题:树状数组也适用于频繁更新数组元素的情况。
  3. 逆序对问题:逆序对问题是一个常见问题,即找出数组中所有满足i<ja[i]>a[j](i, j)对。树状数组可以在O(nlogn)的时间复杂度内解决这个问题。

2 基础知识

2.1 二进制索引的概念和性质

二进制索引,也称为树状数组或有限差分数组,是一种特殊的数据结构,用于高效地处理数组中的前缀和查询。它的核心思想是利用二进制表示中的每一位来快速计算前缀和,从而实现高效的查询和更新操作。

在这里插入图片描述

概念

二进制索引的主要概念是基于数组元素的二进制表示来构建索引。具体来说,对于数组中的每个元素,我们可以将其下标转换为二进制形式,并根据二进制位来构建索引。通过维护这些索引,我们可以快速计算数组的前缀和,从而实现高效的查询和更新操作。

性质

  • 前缀和查询的高效性:二进制索引可以在O(log n)的时间复杂度内计算数组的前缀和。这是因为它利用了二进制表示的特性,通过跳跃式地计算不同位上的前缀和,实现了快速查询。
  • 单点更新的高效性:与前缀和查询一样,二进制索引也可以在O(log n)的时间复杂度内完成单点更新操作。当数组中的某个元素发生变化时,只需要更新对应的索引,即可快速反映到前缀和上。
  • 空间效率:二进制索引的空间复杂度与原始数组相同,即O(n)。它不需要额外的存储空间来维护索引结构,因此具有较高的空间效率。

2.2 前缀和的概念和计算

前缀和(Prefix Sum)是一个数组的概念,指的是数组中从第一个元素开始到某个位置元素(包括该位置元素)的总和。前缀和通常用于快速计算某个区间的和,避免了对每个元素进行逐一相加的操作,从而提高计算效率。

计算前缀和的方法很简单,通常是通过迭代数组中的每个元素,并将当前元素与前一个元素的前缀和相加,得到当前元素的前缀和。第一个元素的前缀和就是它本身。

例如,给定一个数组 arr = [1, 2, 3, 4, 5],它的前缀和数组 prefix_sum 可以这样计算:

prefix_sum[0] = arr[0] = 1  
prefix_sum[1] = arr[0] + arr[1] = 1 + 2 = 3  
prefix_sum[2] = arr[0] + arr[1] + arr[2] = 1 + 2 + 3 = 6  
prefix_sum[3] = arr[0] + arr[1] + arr[2] + arr[3] = 1 + 2 + 3 + 4 = 10  
prefix_sum[4] = arr[0] + arr[1] + arr[2] + arr[3] + arr[4] = 1 + 2 + 3 + 4 + 5 = 15

所以,前缀和数组 prefix_sum 为 [1, 3, 6, 10, 15]。


3 树状数组的定义和数学推导

3.1 通俗易懂的解释什么是树状数组※

在这里插入图片描述

对于一个数组,我们通常需要这样的操作:

  1. 修改某个元素的值
  2. 求一段区间的和

如果用朴素的做法,我们通常需要开一个数组,保存下来所有元素,每查询一次,遍历一次数组

但这会使得求和操作的时间复杂度达到 O ( n ) O(n) O(n),但如果数据量和查询次数达到上百万,这样的效率太低了

  • 但有人可能会想到,把数组中的元素两两求和,保存到另一个数组中:
    在这里插入图片描述

这样我们在计算的时候就会节省一半的时间,修改数据的时候也就是多改一个数字而已,但是对于很大的数据量,还是很慢。

  • 那我们可以再将这一层元素两两求和,往上叠加一层,直到只剩一个元素为止:
    在这里插入图片描述

这样即使要求和的数字很多,我们也可以利用这些额外的数组计算出需要的答案(用空间换时间的思想)

例如:要计算前14个数字的和
在这里插入图片描述
只需要计算这样4个数字就行
在这里插入图片描述

即使要计算前一百万个数字的和,我们也只需要进行10~20次加法

这样将查询的时间复杂度降到了 O ( log ⁡ n ) O(\log n) O(logn),效率提升了很多

观察这个数组我们可以发现,数组中的某些数字是不会用到的,大家可以手动模拟一下,所有层的第偶数个数字在计算时都不会被用到,都有更好的方案来替代
在这里插入图片描述

去除掉不会被用到的数字之后,剩下的数字正好是 n n n个,这与数组的长度是一样的

所以,我们可以用一个与原数组长度相同的数组来装下这些数,这个数组就是一颗树状数组,数组中的每一个元素都对应下面的每一个区间,这些区间表示的都是每个对应的区间和
在这里插入图片描述
求和时,我们只需要找到对应的区间,将这些区间相加即可找到答案

修改某个数据时,我们也只需要向上找到包含它的所有区间修改即可

所有查询以及修改元素的操作,都可以在 O ( log ⁡ n ) O(\log n) O(logn)的时间复杂度内完成

3.2 树状数组的数学推导※

对于一个数 x x x,我们可以把它分解成二进制的形式:
2 i k + 2 i k − 1 + 2 i k − 2 + . . . + 2 i 1 2^{i_{k}}+2^{i_{k-1}} + 2^{i_{k-2}} + ... + 2^{i_{1}} 2ik+2ik1+2ik2+...+2i1其中, 2 i k 2^{i_k} 2ik表示 x x x的最高二进制位, 2 i 1 2^{i_{1}} 2i1表示最低二进制位 i k ≥ i k − 1 ≥ . . . ≥ i 1 ( k ≤ log ⁡ x ) i_{k} \geq i_{k-1} \geq ... \geq i_{1} (k \leq \log x) ikik1...i1(klogx)

假设我们要求 1 − x 1-x 1x的和,我们可以把区间分成 k k k个区间

( x − 2 i 1 , x ] (x-2^{i_1},x] (x2i1,x]
( x − 2 i 1 − 2 i 2 , x − 2 i 1 ] (x-2^{i_1}-2^{i_2},x-2^{i_1}] (x2i12i2,x2i1]
. . . ... ...
( 0 , x − 2 i 1 − 2 i 2 − . . . − 2 i k − 1 ] (0,x-2^{i_1}-2^{i_2}-...-2^{i_{k-1}}] (0,x2i12i2...2ik1]

这样我们把 x x x分成了 log ⁡ x \log x logx个区间,如果我们把所有区间的和都预处理出来,最多只需要加 log ⁡ x \log x logx次就可以将区间和算出来

如何预处理这些数呢?

我们看一下这些区间有什么性质:

  • 首先,每个区间都包含 2 i 2^i 2i个数
  • 每个区间 ( L , R ] (L,R] (L,R]的长度一定是 R R R的二进制表示的最后一位 1 1 1所对应的次幂

所以,利用lowbit函数,我们可以把贝格区间简化为 ( R − l o w b i t ( R ) + 1 , R ] (R-lowbit(R)+1,R] (Rlowbit(R)+1,R](该函数的定义如下)

def lowbit(x):return x & -x

于是,我们如果想用数组来记录区间和,可以用c[R]来表示区间和:c[x] = a[x - lowbit(x) + 1, x]

下面来看一下c[x]之间的关系:

在这里插入图片描述

经过这样的数学推导之后,我们得到了与上面介绍中一致的形式

下面来介绍一下如何计算的数学推导

  • 给出x,如何找到x的所有子节点

假设 x > 0 x > 0 x>0,则必然存在最后一位 1 1 1,假设这一位 1 1 1后面有 k k k 0 0 0,我们让 x − 1 x-1 x1,则后面有连续的 k k k 1 1 1,这每个 1 1 1都对应一个儿子,我们找每个儿子只需要每次减去最后一位 1 1 1,一直减 k k k次,直到变成 0 0 0

二进制表示解释如下:

c[x] ~ (x - lowbit(x) + 1, x]
x - 1 ~ ...1000(k个0)
儿子区间1 : (...0111, ...0110]
儿子区间2 : (...0110, ...0100]
儿子区间3 : (...0100, ...0000]
  • 如何通过子节点找父节点?

这个与找儿子结点是相反的,是一个迭代的过程,通常用于修改结点

假设给定一个x,修改完a[x]之后要修改哪些区间和?

假设 p p p是一个父节点,它的二进制表示要满足要找子节点之前的形式(最后一位1后面跟着若干个0),那么它的子节点一定满足那个1变成0,后面跟若干个1,后面是若干个0

我们只需要把上面的过程逆过来就可以了

每次加上一个lowbit(x),就找到直接父节点,然后一直往上加,直到加到那个父节点的位置是1,一共加 log ⁡ x \log x logx次,就可以找到所有父节点

对于一个要修改的a[x],修改操作的代码是:

for(int i = x; i <= n; i += lowbit(i)) tr[i] += c;

要想明白的是:为什么改完x之后,只需要更新tr数组的最多这么logx个位置(结合上面的黑白图)

查询(1~x的区间和)操作的代码(找子区间):

for(int i = x; i; i -= lowbit(x)) res += tr[i];

部分内容及灵感来源:
https://www.bilibili.com/video/BV1ce411u7qP/
https://www.acwing.com/file_system/file/content/whole/index/content/172493/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/521688.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

现货商品购销挂牌交收系统VUE源码

现货商品购销挂牌交收系统的VUE源码涉及具体的技术实现和系统设计&#xff0c;这通常是一个复杂且专业性的任务&#xff0c;通常由开发团队根据具体业务需求和技术要求来完成。由于源码的复杂性和版权问题&#xff0c;我无法直接提供完整的现货商品购销挂牌交收系统的VUE源码。…

【C++杂货铺】详解string

目录 &#x1f308;前言&#x1f308; &#x1f4c1; 为什么学习string &#x1f4c1; 认识string&#xff08;了解&#xff09; &#x1f4c1; string的常用接口 &#x1f4c2; 构造函数 &#x1f4c2; string类对象的容量操作 &#x1f4c2; string类对象的访问以及遍历操…

yolov8多batch推理,nms后处理

0. 背景 在高速公路监控视频场景下&#xff0c;图像分辨率大都是1920 * 1080或者2560 * 1440&#xff0c;远处的物体&#xff08;车辆和行人等&#xff09;都比较小。考虑需要对图像进行拆分&#xff0c;然后把拆分后的数据统一送入模型中&#xff0c;推理的结果然后再做nms&am…

看完不会来揍我 | 生存分析详解 | 从基础概念到生存曲线绘制 | 代码注释 + 结果解读

大名鼎鼎的生存分析来咯&#xff01;今天我就不叭叭叭了&#xff0c;咱们直接开始冲&#xff01;&#xff08;字有点多&#xff0c;希望大家不要嫌弃&#xff01;&#xff09; 提前说一句&#xff0c;我们今天介绍的K-M曲线主要用于比较不同组别生存曲线之间的差异&#xff0c;…

IOS开发0基础入门UIkit-1cocoapod安装、更新和使用 , 安装中出现的错误及解决方案 M1或者M2安装cocoapods

cocoapod是ios开发时常用的包管理工具 1.M1或者是M2系统安装cocoapods先操作一下两个设置 1、打开访达->应用->实用工具->终端->右键点击终端->显示简介->勾选使用 Rosetta 打开&#xff0c;关闭终端&#xff0c;重新打开。 2、打开访达->应用->Xcod…

【elasticsearch】ES的JAVA工具类完整版(待完成...)

springboot 的 elasticsearch 版本: 7.15.2 前情提要: 1.首先要理解 elasticsearch 对于【数据类型】很严格,如果字段类型不规范,在 检索/排序/聚合 时候类型不正确就会出现报错或者查不到数据的问题。所以在一般String类型插入结构如下: 这样的结构,不仅可以支持分词查…

实现QT中qDebug()的日志重定向

背景&#xff1a; 在项目开发过程中&#xff0c;为了方便分析和排查问题&#xff0c;我们需要将原本输出到控制台的调试信息写入日志文件&#xff0c;进行持久化存储&#xff0c;还可以实现日志分级等。 日志输出格式&#xff1a; 我们需要的格式包括以下内容&#xff1a; 1.…

【Qt】四种绘图设备详细使用

绘图设备有4个: **绘图设备是指继承QPainterDevice的子类————**QPixmap QImage QPicture QBitmap(黑白图片) QBitmap——父类QPixmapQPixmap图片类&#xff0c;主要用来显示&#xff0c;它针对于显示器显示做了特殊优化&#xff0c;依赖于平台的&#xff0c;只能在主线程…

SPFA找负环

2024-01-31&#xff08;最短路径&#xff09;-CSDN博客 求负环的常用方法&#xff0c;基于spfa&#xff1a; 1.统计每个点入队的次数&#xff0c;如果有个点入队n次&#xff0c;则说明存在负环 2.统计当前每个点的最短路中包含的边数&#xff0c;如果某个点的最短路的所包含的边…

C++初阶 类(上)

目录 1. 什么是类 2. 如何定义出一个类 3. 类的访问限定符 4. 类的作用域 5. 类的实例化 6. 类的大小 7. this指针 1.this指针的引出 2. this指针的特性 8. 面试题 1. 什么是类 在C语言中&#xff0c;不同类型的数据集合体是结构体。为了方便管理结构体&#xff0c;我…

使用Python快速提取PPT中的文本内容

直接提取PPT中的文本内容可以方便我们进行进一步处理或分析&#xff0c;也可以直接用于其他文档的编撰。通过使用Python程序&#xff0c;我们可以快速批量提取PPT中的文本内容&#xff0c;从而实现高效的信息收集或对其中的数据进行分析。本文将介绍如何使用Python程序提取Powe…

智能泵站智能运维系统

在现代化城市建设和工农业发展中&#xff0c;泵站作为关键的水利设施&#xff0c;其运行效率和稳定性至关重要。然而&#xff0c;传统的泵站运维方式往往依赖于人工巡检和定期维护&#xff0c;这种方式不仅效率低下&#xff0c;而且难以应对突发状况。随着物联网技术的飞速发展…