O2O:Sample Efficient Offline-to-Online Reinforcement Learning

IEEE TKDE 2024
paper

Introduction

O2O存在策略探索受限以及分布偏移问题,进而导致在线微调阶段样本效率低。文章提出OEMA算法首先使用离线数据训练乐观的探索策略,然后提出基于元学习的优化方法,减少分布偏移并提高O2O的适应过程。

Method

在这里插入图片描述

optimistic exploration strategy

离线学习方法TD3+BC的行为策略 π e ( s ) \pi_e(s) πe(s)是由目标策略 π ϕ ( s ) \pi_\phi(s) πϕ(s)加上一个正态分布中采样的噪声。文章指出,目标策略被优化靠近离线数据集的保守策略,为了提高目标策略的探索能力,本文提出基于价值不确定性度量的方法:
π e = arg ⁡ max ⁡ π Q ^ U B ( s , π ( s ) ) , s . t . 1 2 ∥ π ϕ ( s ) − π ( s ) ∥ ≤ δ , \begin{aligned}\pi_{e}&=\arg\max_{\pi}\hat{Q}_{\mathrm{UB}}(s,\pi(s)),\\s.t.&\frac{1}{2}\|\pi_{\phi}(s)-\pi(s)\|\le\delta,\end{aligned} πes.t.=argπmaxQ^UB(s,π(s)),21πϕ(s)π(s)δ,
其中 Q ^ U B ( s , π ( s ) ) \hat{Q}_{\mathrm{UB}}(s,\pi(s)) Q^UB(s,π(s))为Q值的近似上界, 用来衡量认知不确定性。上述问题在保证策略约束的同时选择高不确信的动作。

不确信估计采用高斯分布。分布的均值为两个Q网络输出的均值,而方差表示如下:
σ Q ( s , a ) = ∑ i = 1 , 2 1 2 ( Q θ i ( s , a ) − μ Q ( s , a ) ) 2 = 1 2 ∣ Q θ 1 ( s , a ) − Q θ 2 ( s , a ) ∣ . \begin{gathered} \sigma_{Q}(s,a) =\sqrt{\sum_{i=1,2}\frac12(Q_{\theta_{i}}(s,a)-\mu_{Q}(s,a))^{2}} \\ =\frac12\Big|Q_{\theta_1}(s,a)-Q_{\theta_2}(s,a)\Big|. \end{gathered} σQ(s,a)=i=1,221(Qθi(s,a)μQ(s,a))2 =21 Qθ1(s,a)Qθ2(s,a) .
那么 Q ^ U B = μ Q ( s , a ) + β UB σ Q ( s , a ) \hat{Q}_{\mathrm{UB}} =\mu_Q(s,a)+\beta_\text{UB}\sigma_Q(s,a) Q^UB=μQ(s,a)+βUBσQ(s,a) β \beta β控制乐观程度,当取值-1时上式等价于:
Q ^ U B ( s , a ) ∣ β U B = − 1 = μ Q ( s , a ) − σ Q ( s , a ) = 1 2 ( Q θ 1 ( s , a ) + Q θ 2 ( s , a ) ) − 1 2 ∣ Q θ 1 ( s , a ) − Q θ 2 ( s , a ) ∣ = min ⁡ ( Q θ 1 ( s , a ) , Q θ 2 ( s , a ) ) , (9) \begin{aligned} &\hat{Q}_{\mathrm{UB}}(s,a)\Big|_{\beta_{\mathrm{UB}}=-1}=\mu_{Q}(s,a)-\sigma_{Q}(s,a) \\ &\begin{aligned}&=\frac{1}{2}(Q_{\theta_1}(s,a)+Q_{\theta_2}(s,a))-\frac{1}{2}|Q_{\theta_1}(s,a)-Q_{\theta_2}(s,a)|\end{aligned} \\ &=\min(Q_{\theta_{1}}(s,a),Q_{\theta_{2}}(s,a)),& \text{(9)} \end{aligned} Q^UB(s,a) βUB=1=μQ(s,a)σQ(s,a)=21(Qθ1(s,a)+Qθ2(s,a))21Qθ1(s,a)Qθ2(s,a)=min(Qθ1(s,a),Qθ2(s,a)),(9)
而当 β = 1 \beta=1 β=1时等价于 Q ^ U B ( s , a ) ∣ β U B = 1 = max ⁡ ( Q θ 1 ( s , a ) , Q θ 2 ( s , a ) ) , \left.\hat{Q}_\mathrm{UB}(s,a)\right|_{\beta_\mathrm{UB}=1}=\max(Q_{\theta_1}(s,a),Q_{\theta_2}(s,a)), Q^UB(s,a) βUB=1=max(Qθ1(s,a),Qθ2(s,a)),

原问题一种简单的解决方法是使用BC将其转化为无约束问题:
π e naive ( s ) = arg ⁡ max ⁡ π Q ^ UB ( s , π ( s ) ) − λ ∥ π ϕ ( s ) − π ( s ) ∥ \pi_e^\text{naive}{ ( s ) }=\arg\max_{\pi}\hat{Q}_\text{UB}{ ( s , \pi ( s ) ) }-\lambda\|\pi_\phi(s)-\pi(s)\| πenaive(s)=argπmaxQ^UB(s,π(s))λπϕ(s)π(s)
然而,由于目标策略通过策略改进不断更新,这种基于行为克隆的惩罚项无法缩小行为策略和目标策略之间的差距,违反了带约束的原问题。

为了解决该问题,提出在TD3的行为策略上增加一项扰动模型 ξ \xi ξ。行为策略改为
π e ( s ) = π ϕ ( s ) + ξ ω ( s , π ϕ ( s ) ) + ϵ \pi_e(s)=\pi_\phi(s)+\xi_\omega(s,\pi_\phi(s))+\epsilon πe(s)=πϕ(s)+ξω(s,πϕ(s))+ϵ
而对扰动模型的参数最小化下列损失函数
L ( ω ) = − E s ∼ B [ Q ^ U B ( s , π e ( s ) ) ] \mathcal{L}(\omega)=-\mathbb{E}_{s\sim\mathcal{B}}\left[\hat{Q}_{\mathrm{UB}}(s,\pi_e(s))\right] L(ω)=EsB[Q^UB(s,πe(s))]

Meta Adaptation for Distribution Shift Reduction

接着,为了解决在线微调存在的分布偏移问题,采用元学习的方法。具体的,保留两个buffer,Buffer B B B存储离线以及在线所有数据, B r B_r Br存储最新在线数据。

meta training

首先在B上训练策略:
L t r n ( ϕ ) = − E s ∼ B [ Q θ 1 ( s , π ϕ ( s ) ) ] \mathcal{L}_{trn}(\phi)=-\mathbb{E}_{s\sim\mathcal{B}}\left[Q_{\theta_1}\left(s,\pi_\phi(s)\right)\right] Ltrn(ϕ)=EsB[Qθ1(s,πϕ(s))]
然后基于SGD的一次梯度下降得到: ϕ ′ = ϕ − α ∇ ϕ L t r n ( ϕ ) \phi^{\prime}=\phi-\alpha\nabla_{\phi}\mathcal{L}_{trn}(\phi) ϕ=ϕαϕLtrn(ϕ)

meta test

然后利用最新在线数据集测试:
L t s t ( ϕ ′ ) = − E s ∼ B r [ Q θ 1 ( s , π ϕ ′ ( s ) ) ] \mathcal{L}_{tst}(\phi')=-\mathbb{E}_{s\sim\mathcal{B}_r}[Q_{\theta_1}(s,\pi_{\phi'}(s))] Ltst(ϕ)=EsBr[Qθ1(s,πϕ(s))]

meta optimization

最后将上述两个损失函数用下面的元优化目标共同优化
ϕ = arg ⁡ min ⁡ ϕ L t r n ( ϕ ) + β L t s t ( ϕ − α ∇ ϕ L t r n ( ϕ ) ) \phi=\arg\min_\phi\mathcal{L}_{trn}(\phi)+\beta\mathcal{L}_{tst}(\phi-\alpha\nabla_\phi\mathcal{L}_{trn}(\phi)) ϕ=argϕminLtrn(ϕ)+βLtst(ϕαϕLtrn(ϕ))

问题

  1. 原文中在meta optimization中对 ϕ \phi ϕ梯度更新是否修正为:
    ϕ ← ϕ − α ∂ ( L t r n ( ϕ ) + β L t s t ( ϕ − α ∇ ϕ L t r n ( ϕ ) ) ) ∂ ϕ \phi\leftarrow\phi-\alpha\frac{\partial\left(\mathcal{L}_{trn}\left(\phi\right) +\beta\mathcal{L}_{tst}\left(\phi-\alpha\nabla_{\phi}\mathcal{L}_{trn}\left(\phi\right)\right)\right)}{\partial\phi} ϕϕαϕ(Ltrn(ϕ)+βLtst(ϕαϕLtrn(ϕ)))
  2. 基于这个偏导出现的第二个问题。这是源码中元学习的训练过程
# Compute actor losseactor_loss = -self.critic.Q1(state, self.actor(state)).mean()""" Meta Training"""self.actor_optimizer.zero_grad()actor_loss.backward(retain_graph=True)self.hotplug.update(3e-4)"""Meta Testing"""self.beta = max(0.0, self.beta - self.anneal_step)meta_actor_loss = -self.critic.Q1(meta_state, self.actor(meta_state)).mean()weight = self.beta * actor_loss.detach() / meta_actor_loss.detach()meta_actor_loss_norm = weight * meta_actor_lossmeta_actor_loss_norm.backward(create_graph=True)"""Meta Optimization"""self.actor_optimizer.step()self.hotplug.restore()

其中,meta-testing中计算weight以及meta_actor_loss_norm不太明白。按照本人的理解,原文计算 L t s t L_{tst} Ltst ϕ \phi ϕ求偏导:
β ∂ L t s t ( ϕ − α ∇ ϕ L t r n ( ϕ ) ) ∂ ϕ = β ∂ L t s t ( ϕ − α ∇ ϕ L t r n ( ϕ ) ) ∂ ϕ ′ ∂ ϕ ′ ∂ ϕ \frac{\beta{\color{red}\partial}\mathcal{L}_{tst}\left(\phi-\alpha\nabla_{\phi}\mathcal{L}_{trn}\left(\phi\right)\right)}{\partial\phi}=\beta\frac{{\color{red}\partial}\mathcal{L}_{tst}\left(\phi-\alpha\nabla_{\phi}\mathcal{L}_{trn}\left(\phi\right)\right)}{\partial\phi'}\frac{\partial\phi'}{\partial\phi} ϕβLtst(ϕαϕLtrn(ϕ))=βϕLtst(ϕαϕLtrn(ϕ))ϕϕ
中间的偏导自然是由meta-test小节的损失函数所得到的meta_actor_loss。而 β ∂ ϕ ′ ∂ ϕ = β ∂ L t s t ∂ ϕ / ∂ L t s t ∂ ϕ ′ = β ∂ L t r n ∂ ϕ / ∂ L t r n ∂ ϕ ′ \beta\frac{\partial\phi'}{\partial\phi}=\beta\frac{\partial L_{tst}}{\partial\phi}/\frac{\partial L_{tst}}{\partial\phi'}=\beta\frac{\partial L_{trn}}{\partial\phi}/\frac{\partial L_{trn}}{\partial\phi'} βϕϕ=βϕLtst/ϕLtst=βϕLtrn/ϕLtrn就是那个weight。
但这样应该使用从相同的Buffer中获得状态数据,这并未在源码中体现。

可能有误,欢迎指正

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/522818.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Unity】ABB CRB 15000 外部引导运动

一、RobotStudio控制器的文件系统和配置参数 HOME:控制器文件系统的根目录或起始点。配置:机器人控制器的配置设置和参数。外件信息:连接到机器人的外部组件的信息。I/O 系统:输入/输出系统,管理机器人和外部设备之间的…

SIP广播对讲主机ip网络对讲广播调度主机

SIP广播对讲主机ip网络对讲广播调度主机 深圳锐科达电子有限公司的这款sip话筒SV-8003SP作为SIP广播对讲系统的主机,可用于需要对讲求助、紧急报警以及环境J听的场所,例如自助银行对讲主机、监仓对讲主机、教室广播主机、医院广播对讲话筒、SIP矿井寻呼话…

LVS集群(Linux Virtual server)介绍----及LVS的NAT模式部署(一)

群集的含义 ●Cluster,集群、群集由多台主机构成,但对外只表现为一个整体,只提供访问入口(域名或IP地址),相当于一台大型计算机 问题: 互联网应用中,随着站点对硬件性能、响应速度、服务稳定性、数据可靠…

BUUCTF-DASBOOK1

[第一章][1.3.5 案例解析][极客大挑战 2019]Http 1 1.启动靶机 2.查看源代码,发现有链接 3.点击链接,跳转页面有提示,意思是:它并不来自于https:/Sycsecret.buuoj.cn 打开hackbar,如图所示,然后执行 4.得到…

耐腐蚀特氟龙塑料材质PFA烧杯超纯试剂反应杯

PFA烧杯在实验过程中可作为储酸容器或涉及强酸强碱类实验的反应容器,用于盛放样品、试剂,也可搭配电热板加热、蒸煮、赶酸用。 外壁均有凸起刻度,直筒设计,带翻边,便于夹持和移动,边沿有嘴,便于…

掼蛋的牌型与规律(上篇)

掼蛋是一项配合类的棋牌竞技游戏,掼蛋的最大魅力以及最集中的特点在于变化,在于组牌的变数。有的掼蛋新手往往先把牌配死,并且直接决定好出牌计划,然后守株待兔。掼蛋的取胜之道在于静态组合加上动态变化。本文主要介绍一下掼蛋的…

编译内核错误 multiple definition of `yylloc‘

编译内核错误 # make ARCHarm CROSS_COMPILEarm-mix410-linux- uImageHOSTLD scripts/dtc/dtc /usr/bin/ld: scripts/dtc/dtc-parser.tab.o:(.bss0x10): multiple definition of yylloc; scripts/dtc/dtc-lexer.lex.o:(.bss0x0): first defined here collect2: error: ld ret…

支小蜜校园防欺凌系统听到声音之后会自动识别吗

在校园安全领域,特别是在预防和应对欺凌问题上,校园防欺凌系统作为新兴的技术应用,正在受到越来越多的关注和探索。那么当这样的系统听到声音之后,它是否能够自动识别并作出相应反应呢?本文将围绕这一问题展开探讨。 …

向量的内积、长度、正交性

目录 向量的内积 向量的长度(模) 标准正交基 标准正交化 正交矩阵 向量的内积 向量的长度(模) 标准正交基 标准正交化 正交矩阵

代码随想录 回溯算法-排序

目录 46.全排序 47.全排列|| 332.重新安排行程 46.全排序 46. 全排列 中等 给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1: 输入:nums [1,2,3] 输出:[[1,2,3],[1,…

高效安全数据实时同步ftp文件解决方案

随着企业对于数据的实时同步需求不断攀升,文件传输协议(FTP)作为一项历史悠久的技术,在企业数据交换、网站内容更新以及远程数据备份等领域扮演了重要角色。然而,随着企业业务的快速扩展,FTP在数据实时同步…

Python爬虫——scrapy-2

目录 scrapy简介 安装ipython 基本使用 访问百度 总结 scrapy简介 scrapy shell是Scrapy框架提供的一个交互式命令行工具,用于快速调试和测试Scrapy爬虫。它能够加载Scrapy项目的设置和爬虫代码,并提供一个交互式环境,可以在其中执行Scra…