推荐算法中经典排序算法GBDT+LR

文章目录

    • 逻辑回归模型
      • 逻辑回归对于特征处理的优势
      • 逻辑回归处理特征的步骤
    • GBDT算法
    • GBDT+LR算法
      • GBDT + LR简单代码实现

逻辑回归模型

  • 逻辑回归(LR,Logistic Regression)是一种传统机器学习分类模型,也是一种比较重要的非线性回归模型,其本质上是在线性回归模型的基础上,加了一个Sigmoid函数(也就是非线性映射),由于其简单、高效、易于并行计算的特点,在工业界受到了广泛的应用。

  • 使用LR模型主要是用于分类任务,通常情况下也都是二分类任务,一般在推荐系统的业务中,会使用LR作为Baseline模型快速上线。

  • 从本质上来讲,逻辑回归和线性回归一样同属于广义线性模型。虽然说逻辑回归可以实现回归预测,但是在推荐算法中,我们都将其看作是线性模型并把它应用在分类任务中。

  • 总结:逻辑回归实际上就是在数据服从伯努利分布的假设下,通过极大似然的方法,运用梯度下降算法对参数进行求解,从而达到二分类。

  • Q&A

    • Q:为什么在推荐系统中使用逻辑回归而不是线性回归?
    • A:原因主要有三点
      1. 虽然两者都是处理二分类问题,但是线性回归主要是处理连续性特征,例如一个人的身高体重,而推荐系统中对于一个物品推荐给用户,物品的特征是离散的。因此不好用线性回归作为预测
      2. 逻辑回归模型具有较高的可解释性,可以帮助我们更好地理解推荐系统中不同因素对推荐结果的影响,而线性回归在这一点上无法实现我们的需求。
      3. 推荐系统中往往存在很多的噪音,逻辑回归可以更好地处理异常值,避免推荐结果被干扰。

逻辑回归对于特征处理的优势

  1. 特征选择:可以使用正则化技术来选择重要的特征,提高模型效率和准确性。
  2. 处理非线性特征:可以通过引入多项式和交互特征来处理非线性特征,从而预测结果更加准确。
  3. 处理缺失值和异常值:可以通过处理缺失值和异常值使得模型更佳健壮,从而预测结果更加准确。
  4. 训练模型速度:训练速度相对较快。

逻辑回归处理特征的步骤

  1. 特征选择:逻辑回归可以使用正则化技术(L1、L2正则化)来选择最重要的特征,从而降低维度并去除无关特征。选择相关的特征有助于提高模型的稳定性和准确性。
  2. 处理缺失值和异常值:逻辑回归可以使用缺失值插补和异常值检测来处理缺失值和异常值,从而避免对模型产生影响,提高模型的健壮性。
  3. 处理非线性特征:逻辑回归可以通过引入多项式和交互特征来处理非线性特征,从而增强模型的表现力。以多项式模型为例,逻辑回归可以使用幂函数或指数函数对特征进行转换,从而处理非线性变量。
  4. 特征标准化:逻辑回归可以使用特征标准化来消除特征数据值的量纲影响,避免数值范围大的特征对模型产生很大影响。
  5. 特征工程:逻辑回归也可以使用特征工程来创建新的特征,例如聚合或拆分现有特征、提取信号等。这有助于发现与目标变量相关的新信息,从而改进对数据的理解。

GBDT算法

  • GBDT(Gradient Boosting Decision Tree)算法是一种基于决策树的集成学习算法,它的学习方式是梯度提升,它通过不断训练决策树来提高模型的准确性。GBDT在每一次训练中都利用当前的模型进行预测,并将预测误差作为新的样本权重,然后训练下一棵决策树模型来拟合加权后的新数据。
  • GBDT中的B代表的是Boosting算法,Boosting算法的基本思想是通过将多个弱分类器线性组合形成一个强分类器,达到优化训练误差和测试误差的目的。具体应用时,每一轮将上一轮分类错误的样本重新赋予更高的权重,这样一来,下一轮学习就容易重点关注错分样本,提高被错分样本的分类准确率。GBDT由多棵CART树组成,本质是多颗回归树组成的森林。每一个节点按贪心分裂,最终生成的树包含多层,这就相当于一个特征组合的过程。
  • 理论上来说如果可以无限制的生成决策树,GBDT就可以无限逼近由所有训练样本所组成的目标拟合函数,从而达到减小误差的目的,同样这种思想后来也被运用在了ResNet残差神经网络上。
  • 在推荐系统中,我们使用GBDT算法来优化和提高个性化推荐的准确性。通过GBDT算法对用户历史行为数据进行建模和学习,可以很容易地学习到用户的隐式特征(例如品味,偏好,消费能力等)。另外,GBDT算法可以自动选择重要的特征,对离散型和连续型特征进行处理(如缺失值填充、离散化等),为特征工程提供更好的支持。

GBDT+LR算法

  • 在推荐系统中使用GBDT+LR结合算法主要是用于处理点击率预估,这个也是facebook在2014年发表的论文Practical Lessons from Predicting Clicks on Ads at Facebook。根据点击率预估的结果进行排序,所以GBDT+LR用于排序层。
  • GBDT+LR架构图
    在这里插入图片描述
  • 整个模型主要分为两个步骤,上面的GBDT和下面的LR。主要分为五个步骤:
    1. GBDT训练:使用GBDT对原始数据进行训练并生成特征。在训练过程中,每棵树都是基于前一棵树的残差进行构建。这样,GBDT可以逐步减少残差,生成最终的目标值。
    2. 特征转换:使用GBDT生成的特征进行转换。这些特征是树节点的输出,每个特征都对应于一个叶子节点。在转换过程中,每个叶子节点都会被转换为一个新的特征向量,代表这个叶子节点与其他节点的相对位置,并将这些特征向量连接起来形成新的训练集(用于下一步LR)。
    3. 特征归一化:对生成的特征进行归一化处理,确保不同维度的特征在训练过程中具有相等的权重。
    4. LR训练:使用LR对转换后的特征进行二分类或回归。特征向量被送入LR模型中进行训练,以获得最终的分类模型。在训练过程中,使用梯度下降法来更新模型参数,以最小化损失函数,损失函数的选择取决于分类问题的具体情况。
    5. 模型预测:训练完成后,使用LR模型对新的数据进行预测。GBDT+LR模型将根据特征生成函数和逻辑回归模型预测新数据的类别或值。
  • GBDT + LR优缺点
    • 优点:
      提高模型预测精度
      模型具有鲁棒性和可扩展性
      具有良好的可解释性
    • 缺点:建模复杂度高
      训练时间计算成本高
      对异常值和噪声数据敏感

GBDT + LR简单代码实现

import pandas as pd
import numpy as np
import lightgbm as lgb
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import f1_score, accuracy_score, precision_score, recall_score
from sklearn.preprocessing import OneHotEncoder# 读取数据集
# 数据集地址https://grouplens.org/datasets/movielens/
ratings = pd.read_csv("../../data/ml-1m/ratings.dat", sep="::", header=None, names=["user_id", "movie_id", "rating", "timestamp"], encoding='ISO-8859-1', engine="python")
movies = pd.read_csv("../../data/ml-1m/movies.dat", sep="::", header=None, names=["movie_id", "title", "genres"], encoding='ISO-8859-1', engine="python")
# 将两个数据集根据movie_id合并,并去掉timestamp,title
data = pd.merge(ratings, movies, on="movie_id").drop(columns=["timestamp", "title"])
# print(data.head(50))# genres字段转换为多个二值型变量(使用pandas的get_dummies函数)
genres_df = data.genres.str.get_dummies(sep="|")
# genres_df = pd.get_dummies(data['genres'])
# print(genres_df.head(50))
data = pd.concat([data, genres_df], axis=1).drop(columns=["genres"])
# print(data.head(50))# 提取出用于训练 GBDT 模型和 LR 模型的特征和标签
features = data.drop(columns=["user_id", "movie_id", "rating"])
# print(features.head(50))
label = data['rating']# 划分训练集和测试集(8,2开)
split_index = int(len(data) * 0.8)
train_x, train_y = features[:split_index], label[:split_index]
test_x, test_y = features[split_index:], label[split_index:]# 训练GBDT模型
n_estimators=100
gbdt_model = lgb.LGBMRegressor(n_estimators=n_estimators, max_depth=5, learning_rate=0.1)
gbdt_model.fit(train_x, train_y)
gbdt_train_leaves = gbdt_model.predict(train_x, pred_leaf=True)
gbdt_test_leaves = gbdt_model.predict(test_x, pred_leaf=True)# 将GBDT输出的叶子节点ID转换为one-hot编码的特征
one_hot = OneHotEncoder()
one_hot_train = one_hot.fit_transform(gbdt_train_leaves).toarray()
one_hot_test = one_hot.fit_transform(gbdt_test_leaves).toarray()# 训练LR模型
lr_model = LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,intercept_scaling=1, l1_ratio=None, max_iter=100,multi_class='auto', n_jobs=None, penalty='l2',random_state=None, solver='lbfgs', tol=0.0001, verbose=0,warm_start=False)
lr_model.fit(one_hot_train, train_y)# 在测试集上评估模型性能
y_pred = lr_model.predict(one_hot_test)
print(f"Accuracy: {accuracy_score(test_y, y_pred)}")
print(f"Precision: {precision_score(test_y, y_pred, average='macro')}")
print(f"Recall: {recall_score(test_y, y_pred, average='macro')}")
print(f"F1-Score (macro): {f1_score(test_y, y_pred, average='macro')}")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/525993.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FPGA的时钟资源

目录 简介 Clock Region详解 MRCC和SRCC的区别 BUFGs 时钟资源总结 简介 7系列FPGA的时钟结构图: Clock Region:时钟区域,下图中有6个时钟区域,用不同的颜色加以区分出来 Clock Backbone:从名字也能看出来&#x…

【C语言】linux内核ip_local_out函数

一、讲解 这个函数 __ip_local_out 是 Linux 内核网络子系统中的函数,部分与本地出口的 IPv4 数据包发送相关。下面讲解这段代码的每一部分: 1. 函数声明 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb): -…

Hive安装教程-Hadoop集成Hive

文章目录 前言一、安装准备1. 安装条件2. 安装jdk3. 安装MySQL4. 安装Hadoop 二、安装Hive1. 下载并解压Hive2. 设置环境变量3. 修改配置文件3. 创建hive数据库4. 下载MySQL驱动5. 初始化hive数据库6. 进入Hive命令行界面7. 设置允许远程访问 总结 前言 本文将介绍安装和配置H…

Spring web开发(入门)

1、我们在执行程序时,运行的需要是这个界面 2、简单的web接口(127.0.0.1表示本机IP) package com.example.demo;import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestCont…

【sgExcelGrid】自定义组件:简单模拟Excel表格拖拽、选中单元格、横行、纵列、拖拽圈选等操作

特性&#xff1a; 可以自定义拖拽过表格可以点击某个表格&#xff0c;拖拽右下角小正方形进行任意方向选取单元格支持选中某一行、列支持监听selectedGrids、selectedDatas事件获取选中项的DOM对象和数据数组支持props自定义显示label字段别名 sgExcelGrid源码 <template&g…

SQLite3中的callback回调函数注意的细节

调用 sqlite3_exec(sqlite3*, const char *sql, sqlite_callback, void *data, char **errmsg)该例程提供了一个执行 SQL 命令的快捷方式&#xff0c; SQL 命令由 sql 参数提供&#xff0c;可以由多个 SQL 命令组成。 在这里&#xff0c; 第一个参数 sqlite3 是打开的数据库对…

HarmonyOS NEXT应用开发案例——列表编辑实现

介绍 本示例介绍用过使用ListItem组件属性swipeAction实现列表左滑编辑效果的功能。 该场景多用于待办事项管理、文件管理、备忘录的记录管理等。 效果图预览 使用说明&#xff1a; 点击添加按钮&#xff0c;选择需要添加的待办事项。长按待办事项&#xff0c;点击删除后&am…

C++——string模拟实现

前言&#xff1a;上篇文章我们对string类及其常用的接口方法的使用进行了分享&#xff0c;这篇文章将着重进行对这些常用的接口方法的内部细节进行分享和模拟实现。 目录 一.基础框架 二.遍历字符串 1.[]运算符重载 2.迭代器 3.范围for 三.常用方法 1.增加 2.删除 3.调…

HTML 学习笔记(八)表格

一、表格 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title></head><…

Excel 快速填充/输入内容

目录 一. Ctrl D/R 向下/右填充二. 批量输入内容 一. Ctrl D/R 向下/右填充 ⏹如下图所示&#xff0c;通过快捷键向下和向右填充数据 &#x1f914;当选中第一个单元格之后&#xff0c;可以按住Shift后&#xff0c;再选中最后一个单元格&#xff0c;可以选中第一个单元格和最…

【深度学习笔记】6_5 RNN的pytorch实现

注&#xff1a;本文为《动手学深度学习》开源内容&#xff0c;部分标注了个人理解&#xff0c;仅为个人学习记录&#xff0c;无抄袭搬运意图 6.5 循环神经网络的简洁实现 本节将使用PyTorch来更简洁地实现基于循环神经网络的语言模型。首先&#xff0c;我们读取周杰伦专辑歌词…

SQL中常见的DDL操作及示例,数据库操作及表操作

目录 一、数据库操作 1、创建数据库 2、查看所有数据库 3、使用数据库 4、删除数据库 二、表操作&#xff1a; 1、创建表 2、查看表结构 3、修改表结构 3.1 添加列 3.2 修改列数据类型 3.3 修改列名 3.4 删除列 3.5 修改表名 3.6 删除表 注意&#xff1a; 在数…