使用Tokeniser估算GPT和LLM服务的查询成本

将LLM集成到项目所花费的成本主要是我们通过API获取LLM返回结果的成本,而这些成本通常是根据处理的令牌数量计算的。我们如何预估我们的令牌数量呢?Tokeniser包可以有效地计算文本输入中的令牌来估算这些成本。本文将介绍如何使用Tokeniser有效地预测和管理费用。

大语言模型(如GPT)中的"tokens"是指模型用来处理和理解文本的基本单位。令牌是语言模型处理文本时的基本单位,可以是单词、子词(subwords)、字符或者其他更小的文本单元。所以我们在计算令牌时不能简单的将单词按照空格分隔,而将一段文本分解成令牌的过程称为"tokenization",这是预处理文本的重要步骤。

大语言模型中一般都会使用子词作为令牌,这对于处理词汇表中未见过的单词很有帮助。例如,“unhappiness"可能被分解成"un”, “happi”, "ness"这三个子词。

Tokeniser是一个轻量级、高效的Python包,使用正则表达式进行计数,这样可以在不加载复杂的NLP模型时进行快速的估计:

 importtokenisertext="Hello, World!"token_count=tokeniser.estimate_tokens(text)print(f"Number of tokens: {token_count}")

这个包对于估计输入提示和来自LLM模型的预期响应中的令牌数量特别有用。假设输入提示包含60个令牌,期望的响应长度为150个令牌,那么每个请求的令牌总数为210

有了总令牌计数,就可以根据GPT或其他LLM服务的定价来估计成本。例如,如果服务每1000个令牌收费0.02美元:

每次请求费用: 210/1000∗0.02=0.0042

我们可以将上面的工作封装成一个函数进行总成本预测:

 importtokeniserdefestimate_cost_with_tokeniser(prompt, max_response_length, cost_per_thousand_tokens):input_tokens=tokeniser.estimate_tokens(prompt)total_tokens=input_tokens+max_response_lengthcost_per_request= (total_tokens/1000) *cost_per_thousand_tokensreturncost_per_request# Example usageprompt="Write a concise guide on estimating GPT and LLM query costs."max_response_length=150# Desired response length in tokenscost_per_thousand_tokens=0.02# Cost per 1,000 tokensestimated_cost=estimate_cost_with_tokeniser(prompt, max_response_length, cost_per_thousand_tokens)print(f"Estimated cost per request: ${estimated_cost:.4f}")

把它放到我们的工具类中,这样就可以在任何需要的时候直接调用了

总结

Tokeniser包为开发人员提供了一种实用而有效的方法来估计GPT和LLM查询令牌数,这对于管理和预测使用成本至关重要。通过将简单的令牌计数合并到成本估算过程中,可以确保项目更有效的预算管理。

https://avoid.overfit.cn/post/064552e1902b468d834e7d65399dcd04

作者:Eugene Evstafev

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/526046.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

three.js 包围盒

效果&#xff1a; 想要显示包围盒的样子&#xff1b;需要借助 Box3Helper 辅助显示&#xff1b; <template><div><el-container><el-main><div class"box-card-left"><div id"threejs"></div></div><…

探讨系统测试的最佳实践与思维模式!

这是测试活动过程详解系列的最后一篇文章。之前的想法&#xff0c;是对测试过程各重要环节进行拆解&#xff0c;然后介绍这个环节重点要做的事情&#xff0c;为什么要做这些事&#xff0c;以及注意事项。 前面几篇文章分别介绍了单元测试、集成测试、回归测试阶段要解决的问题…

剑指offer经典题目整理(二)

一、斐波那契数列&#xff08;fib&#xff09; 1.链接 斐波那契数列_牛客题霸_牛客网 (nowcoder.com) 2.描述 斐波那契数列就是数列中任意一项数字&#xff0c;都会等于前两项之和&#xff0c;满足f(n) f(n-1) f(n-2) 的一个数列&#xff0c;例如&#xff1a;1 1 2 3 5 8…

Ubuntu平铺左、右、上、下、1/2、1/4窗口(脚本)

前言 之前因为一直在用Ubuntu 18或者Ubuntu 20然后发现装了GNOME插件后&#xff0c;电脑在使用过程中&#xff0c;会时不时的卡死&#xff08;鼠标没问题&#xff0c;键盘输入会有10-20秒的延迟&#xff09;频率基本是一小时一次&#xff0c;因为这种卡顿会很容易打断思路&…

首屏性能优化:提升用户体验的秘籍

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

Chrome中如何导出和导入书签

导出书签 如下图所示&#xff1a; 右上角三点->书签和清单->书签管理器->右上角三点->导出书签 然后你选择保存地址即可。打开后如下&#xff1a; 导入书签 如下图所示&#xff1a; 右上角三点->书签和清单->导入书签和设置->选择以前导出的书签&…

存储引擎的详细介绍

通过查询可得&#xff1a; &#xff08;一&#xff09;InnoDB引擎 简介&#xff1a;具备外键支持功能的事务存储引擎 优点&#xff1a; 1.是mysql的默认事务型存储引擎&#xff0c;它被设计用来处理大量短期事务&#xff08;确保事务完整提交和回 滚&#xff09; 2.除了增加…

【数仓】通过Flume+kafka采集日志数据存储到Hadoop

相关文章 【数仓】基本概念、知识普及、核心技术【数仓】数据分层概念以及相关逻辑【数仓】Hadoop软件安装及使用&#xff08;集群配置&#xff09;【数仓】Hadoop集群配置常用参数说明【数仓】zookeeper软件安装及集群配置【数仓】kafka软件安装及集群配置【数仓】flume软件安…

【重新定义matlab强大系列十七】Matlab深入浅出长短期记忆神经网络LSTM

&#x1f517; 运行环境&#xff1a;Matlab &#x1f6a9; 撰写作者&#xff1a;左手の明天 &#x1f947; 精选专栏&#xff1a;《python》 &#x1f525; 推荐专栏&#xff1a;《算法研究》 #### 防伪水印——左手の明天 #### &#x1f497; 大家好&#x1f917;&#x1f91…

19、电源管理入门之微内核中的电源管理

目录 1. QNX电源管理框架 2. QNX客户端API库 3. QNX代码分析 4. Fuchsia中的电源管理 5. Minix中的电源管理 6. Harmony OS中的电源管理 之前介绍的电源管理机制基本都是在Linux中实现的,可以看到很复杂,各种框架,明明一个操作非要转来转去,而且在内核里面实现,跟内…

静态时序分析:SDC约束命令set_multicycle_path详解

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html 目录 指定多周期值 指定建立/保持时间检查 指定上升/下降沿 指定起点或终点 指定时序路径起点 删除多周期路径 添加注释 单周期时序分析 多周期时序分析 本章将继续上章的步伐&a…

php集成修改数据库的字段

1.界面效果 2.代码 <?phpecho <form action"" method"post"><label for"table">表名:</label><input type"text" id"table" name"table"><br><div id"fieldsContaine…