Data Concerns Modeling Concerns

How was the data you are using collected?
What assumptions is your model making by learning from this dataset?
Is this dataset representative enough to produce a useful model?
How could the results of your work be misused?
What is the intended use and scope of your model?


Data Collection:

  • Massive Datasets: Machine learning thrives on large amounts of data. This data can come from various sources, including public databases, sensor readings, user interactions, and even simulations.
  • Collection Methods: The methods used depend on the data source. For instance, web scraping might be used for public data, while surveys or app integration might be used for user-generated data.

Assumptions and Bias:

  • Underlying Patterns: Models are trained to identify patterns in the data. These patterns are assumed to hold true for future data, which isn't always guaranteed.
  • Bias from Data: The data itself can be biased, reflecting the way it was collected or inherent societal biases. A model trained on biased data will perpetuate those biases in its outputs.

Representativeness and Generalizability:

  • Generalizability Goal: The goal is to create a model that works well on new, unseen data. This depends on how well the training data represents the real-world scenario the model will be used in.
  • Limited Data Issues: If the training data is limited or not diverse enough, the model might not perform well on unseen data. This is known as overfitting.

Misuse of Results:

  • Unintended Consequences: A model designed for one purpose could be misused for another, potentially leading to unfair or discriminatory outcomes.
  • Transparency Issues: If the inner workings of a model are not transparent, it can be difficult to identify and address potential biases or errors.

Intended Use and Scope:

  • Clearly Defined Goals: Machine learning models are built for specific purposes. It's crucial to define the intended use and scope clearly from the outset.
  • Responsible Development: Developers should consider potential biases and limitations during development to ensure the model is used responsibly.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/527190.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第15章——西瓜书规则学习

1.序贯覆盖 序贯覆盖是一种在规则学习中常用的策略,它通过逐步构建规则集来覆盖训练数据中的样本。该策略采用迭代的方式,每次从训练数据中选择一部分未被覆盖的样本,学习一条能够覆盖这些样本的规则,然后将这条规则加入到规则集中…

【Python】成功解决ModuleNotFoundError: No module named ‘matplotlib‘

【Python】成功解决ModuleNotFoundError: No module named ‘matplotlib’ 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448…

Linux系统安装及简单操作

目录 一、Linux系统安装 二、Linux系统启动 三、Linux系统本地登录 四、Linux系统操作方式 五、Linux的七种运行级别(runlevel) 六、shell 七、命令 一、Linux系统安装 场景1:直接通过光盘安装到硬件上(方法和Windows安装…

基于springboot实现摄影网站系统项目【项目源码】

基于springboot实现摄影网站系统演示 摘要 随着时代的进步,社会生产力高速发展,新技术层出不穷信息量急剧膨胀,整个社会已成为信息化的社会人们对信息和数据的利用和处理已经进入自动化、网络化和社会化的阶段。如在查找情报资料、处理银行账…

虚拟化

什么是虚拟化 虚拟化(Virtualization)是一种资源分配和管理技术,是将计算机的各种实体资源,比如CPU、内存、磁盘空间、网络适配器等,进行抽象转换后虚拟的设备,可以实现灵活地分割、组合为一个或多个计算机配置环境,并…

el-form-item内的el-select如何自适应宽度

最近在使用element-ui做后台管理的时候,有个需求是在弹窗组件里面,添加一个el-select下拉框选项,但是给el-select设置的宽度无法自适应,原因很简单,我们不需要设置固定宽度,设置百分比就行了,让…

CURE-Net: A Cascaded Deep Network for Underwater Image Enhancement

文章目录 论文结构 及 读论文的方法总结论文理解看图AbstractIntroductionRELATED WORKPROPOSED METHODA Philosophy of Model DesignB Framework of CURE-NetC Proposed GESNet and ORSNetD Proposed DEB and SRBE Loss Function Experiment And ResultA Implementation Detai…

Python算法题集_在排序数组中查找元素的第一个和最后一个位置

Python算法题集_在排序数组中查找元素的第一个和最后一个位置 题34:在排序数组中查找元素的第一个和最后一个位置1. 示例说明2. 题目解析- 题意分解- 优化思路- 测量工具 3. 代码展开1) 标准求解【二分法两次左边界】2) 改进版一【二分法左右边界】3) 改进版二【第三…

JavaScript基础5之作用域、执行上下文的顺序执行、可执行代码、执行上下文栈

JavaScript基础 作用域思考 执行上下文顺序执行可执行代码执行上下文栈案例一案例二case1:case2 作用域 作用域:程序源代码中定义变量的区域。作用域规定了如何查找变量,也就是确定当前执行代码对变量的访问权限。作用域分类:静态作用域&…

Tensorflow2.0+部署(tensorflow/serving)过程备忘记录Windows+Linux

Tensorflow2.0部署(tensorflow/serving)过程备忘记录 部署思路:采用Tensorflow自带的serving进模型部署,采用容器docker 1.首先安装docker 下载地址(下载windows版本):https://desktop.docke…

数学建模【时间序列】

一、时间序列简介 时间序列也称动态序列,是指将某种现象的指标数值按照时间顺序排列而成的数值序列。时间序列分析大致可分成三大部分,分别是描述过去、分析规律和预测未来,本篇将主要介绍时间序列分析中常用的三种模型:季节分解…

一键部署Tesseract-OCR环境C++版本(Windows)

环境:Windows 10 工具:git vcpkg vscode cmake 库:Tesseract 一键部署Tesseract-OCR环境C版本(Windows) 分享这篇文章的原因很简单,就是为了让后续的朋友少走弯路。自己在搜索相关C版本的tesseract部署时…