【Kafka系列 08】生产者消息分区机制详解

一、前言

我们在使用 Apache Kafka 生产和消费消息的时候,肯定是希望能够将数据均匀地分配到所有服务器上

比如很多公司使用 Kafka 收集应用服务器的日志数据,这种数据都是很多的,特别是对于那种大批量机器组成的集群环境,每分钟产生的日志量都能以 GB 数,因此如何将这么大的数据量均匀地分配到 Kafka 的各个 Broker 上,就成为一个非常重要的问题。

二、为什么分区?

如果你对 Kafka 分区(Partition)的概念还不熟悉,可以先返回专栏【Kafka系列 01】Kafka 是什么? 回顾一下。

Kafka 有主题(Topic)的概念,它是承载真实数据的逻辑容器,而在主题之下还分为若干个分区,也就是说 Kafka 的消息组织方式实际上是三级结构:主题 - 分区 - 消息。主题下的每条消息只会保存在某一个分区中,而不会在多个分区中被保存多份。官网上的这张图非常清晰地展示了 Kafka 的三级结构,如下所示:

现在你可以先思考一下:你觉得为什么 Kafka 要做这样的设计?为什么使用分区的概念而不是直接使用多个主题呢?

其实分区的作用就是提供负载均衡的能力,或者说对数据进行分区的主要原因,就是为了实现系统的高伸缩性(Scalability)

不同的分区能够被放置到不同节点的机器上,而数据的读写操作也都是针对分区这个粒度而进行的,这样每个节点的机器都能独立地执行各自分区的读写请求处理。并且,我们还可以通过添加新的节点机器来增加整体系统的吞吐量。

:不同的分布式系统对分区的叫法也不尽相同。比如在 Kafka 中叫分区,在 MongoDB 和 Elasticsearch 中就叫分片 Shard,而在 HBase 中则叫 Region,在 Cassandra 中又被称作 vnode。从表面看起来它们实现原理可能不尽相同,但对底层分区(Partitioning)的整体思想却从未改变。

除了提供负载均衡这种最核心的功能之外,利用分区也可以实现其他一些业务级别的需求,比如实现业务级别的消息顺序的问题

三、分区策略

所谓分区策略是决定生产者将消息发送到哪个分区的算法。Kafka 为我们提供了默认的分区策略,同时它也支持你自定义分区策略。

如果要自定义分区策略,你需要显式地配置生产者端的参数 partitioner.class。这个参数该怎么设定呢?方法很简单,在编写生产者程序时,你可以编写一个具体的类实现org.apache.kafka.clients.producer.Partitioner 接口。这个接口也很简单,只定义了两个方法:partition()close(),通常你只需要实现最重要的 partition 方法。我们来看看这个方法的方法签名:

int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster);

这里的 topic、key、keyBytes、value 和 valueBytes 都属于消息数据,cluster 则是集群信息(比如当前 Kafka 集群共有多少主题、多少 Broker 等)。Kafka 给你这么多信息,就是希望让你能够充分地利用这些信息对消息进行分区,计算出它要被发送到哪个分区中。只要你自己的实现类定义好了 partition 方法,同时设置 partitioner.class 参数为你自己实现类的 Full Qualified Name,那么生产者程序就会按照你的代码逻辑对消息进行分区。虽说可以有无数种分区的可能,但比较常见的分区策略也就那么几种,下面我来详细介绍一下。

3.1 轮询策略

也称 Round-robin 策略,即顺序分配。比如一个主题下有 3 个分区,那么第一条消息被发送到分区 0,第二条被发送到分区 1,第三条被发送到分区 2,以此类推。当生产第 4 条消息时又会重新开始,即将其分配到分区 0,就像下面这张图展示的那样。

这就是所谓的轮询策略。轮询策略是 Kafka Java 生产者 API 默认提供的分区策略。如果你未指定partitioner.class 参数,那么你的生产者程序会按照轮询的方式在主题的所有分区间均匀地“码放”消息。 

轮询策略有非常优秀的负载均衡表现,它总是能保证消息最大限度地被平均分配到所有分区上,故默认情况下它是最合理的分区策略,也是我们最常用的分区策略之一。

3.2 随机策略

也称 Randomness 策略。所谓随机就是我们随意地将消息放置到任意一个分区上,如下面这张图所示。

如果要实现随机策略版的 partition 方法,很简单,只需要两行代码即可:

List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
return ThreadLocalRandom.current().nextInt(partitions.size());

先计算出该主题总的分区数,然后随机地返回一个小于它的正整数。

本质上看随机策略也是力求将数据均匀地打散到各个分区,但从实际表现来看,它要逊于轮询策略,所以如果追求数据的均匀分布,还是使用轮询策略比较好。事实上,随机策略是老版本生产者使用的分区策略,在新版本中已经改为轮询了。 

3.3 按消息键保序策略

也称 Key-ordering 策略。有点尴尬的是,这个名词是我自己编的,Kafka 官网上并无这样的提法。

Kafka 允许为每条消息定义消息键,简称为 Key。这个 Key 的作用非常大,它可以是一个有着明确业务含义的字符串,比如客户代码、部门编号或是业务 ID 等;也可以用来表征消息元数据。特别是在 Kafka 不支持时间戳的年代,在一些场景中,工程师们都是直接将消息创建时间封装进 Key 里面的。一旦消息被定义了 Key,那么你就可以保证同一个 Key 的所有消息都进入到相同的分区里面,由于每个分区下的消息处理都是有顺序的,故这个策略被称为按消息键保序策略,如下图所示。

实现这个策略的 partition 方法同样简单,只需要下面两行代码即可:

List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
return Math.abs(key.hashCode()) % partitions.size();

前面提到的 Kafka 默认分区策略实际上同时实现了两种策略:如果指定了 Key,那么默认实现按消息键保序策略;如果没有指定 Key,则使用轮询策略。

3.4 其他分区策略

上面这几种分区策略都是比较基础的策略,除此之外你还能想到哪些有实际用途的分区策略?其实还有一种比较常见的,即所谓的基于地理位置的分区策略。当然这种策略一般只针对那些大规模的 Kafka 集群,特别是跨城市、跨国家甚至是跨大洲的集群。

四、小结

今天我们讨论了 Kafka 生产者消息分区的机制以及常见的几种分区策略。切记分区是实现负载均衡以及高吞吐量的关键,故在生产者这一端就要仔细盘算合适的分区策略,避免造成消息数据的“倾斜”,使得某些分区成为性能瓶颈,这样极易引发下游数据消费的性能下降。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/527383.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLOv5-Openvino-ByteTrack【CPU】

纯检测如下&#xff1a; YOLOv5-Openvino和ONNXRuntime推理【CPU】 YOLOv6-Openvino和ONNXRuntime推理【CPU】 YOLOv8-Openvino和ONNXRuntime推理【CPU】 YOLOv9-Openvino和ONNXRuntime推理【CPU】 注&#xff1a;YOLOv5和YOLOv6代码内容基本一致&#xff01; 全部代码Github&…

P8680 [蓝桥杯 2019 省 B] 特别数的和:做题笔记

目录 思路 代码 题目链接&#xff1a; P8680 [蓝桥杯 2019 省 B] 特别数的和 思路 最开始我思路主要是从数字转字符串上想的。因为我们需要判断每一位是否是特殊数&#xff0c;字符串很容易做到这一点&#xff0c;只是在数字相加这一步不好实现。 需要用到字符串与数字的…

实验二(二)OSPF路由协议基础实验

1.实验介绍 1.1关于本实验 开放式最短路径优先 OSPF(Open Shortest Path First)是IETF 组织开发的一个基于链路状态的内部网关协议(Interior Gateway Protocol)。目前针对 IPv4 协议使用的是 OSPF Version 2(RFC2328);OSPF 作为基于链路状态的协议&#xff0c;OSPF 具有以下优…

乡村治理深度解析:策略、挑战与解决方案

毋庸置疑&#xff0c;在今天这个崭新的时代&#xff0c;乡村治理的过程已然向我们发出了挑战。为了迎难而上&#xff0c;我们必须摒弃陈旧观念&#xff0c;勇敢迎接并大胆尝试探索与实践新的思路&#xff01;为了达到这一宏伟目标&#xff0c;我们需要首先廓清如下关键概念&…

Qt教程 — 1.1 Linux下安装Qt

目录 1 下载Qt 1.1 官方下载 1.2 百度网盘下载 1.3 Linux虚拟机终端下载 2 Qt安装 3 安装相关依赖 4 测试安装 1 下载Qt 1.1 官方下载 通过官网下载对应版本&#xff0c;本文选择的版本为qt-opensource-linux-x64-5.12.12&#xff0c;Qt官方下载链接&#xff1a;htt…

L1-7 分寝室(Python)

学校新建了宿舍楼&#xff0c;共有 n 间寝室。等待分配的学生中&#xff0c;有女生 n0​ 位、男生 n1​ 位。所有待分配的学生都必须分到一间寝室。所有的寝室都要分出去&#xff0c;最后不能有寝室留空。 现请你写程序完成寝室的自动分配。分配规则如下&#xff1a; 男女生不…

diffusion model(十二): StableCascade技术小结

infopaperhttps://arxiv.org/abs/2306.00637githubhttps://github.com/Stability-AI/StableCascade/tree/master个人blog位置http://myhz0606.com/article/stablecascadehttp://stability.AI bloghttps://stability.ai/news/introducing-stable-cascade 前置知识&#xff1a; …

window mysql 安装出现的问题

1.安装到最后时&#xff0c;报错&#xff1a;authentication_string doesnt have a default value 解决办法&#xff1a; 1.不要关掉该页面&#xff0c;点击skip。 然后单击 back 回退到如下界面 2.去掉 Enable Strict Mode。 不要勾选 2. 最后一步&#xff1a;Start Servic…

Linux:kubernetes(k8s)lable和selecto标签和选择器的使用(11)

通过标签是可以让我们的容器和容器之间相互认识&#xff0c;简单来说一边打了标签&#xff0c;一边使用选择器去选择就可以快速的让他们之间耦合 定义标签有两种办法&#xff0c;一个是文件中&#xff0c;一个是命令行里 我们在前几章编进文件的时候里面都有lable比如 这个就是…

docker学习(十四)docker搭建私服

docker私服搭建&#xff0c;配置域名访问&#xff0c;设置访问密码 启动registry docker run -d \-p 5000:5000 \-v /opt/data/registry:/var/lib/registry \registrydocker pull hello-world docker tag hello-world 127.0.0.1:5000/hello-world docker push 127.0.0.1:5000…

自动从Android上拉取指定文件

需求场景 利用Mac中的脚本编辑器实现从连接的Android设备中获取指定的文件。 环境 macOS Monterey 版本 12.7.1脚本编辑器adb环境&#xff08;如果没有的话&#xff0c;可以网上搜下Mac配置adb&#xff09; 实现方案 1、打开脚本编辑器&#xff1b; 2、新建一个脚本文件&…

吴恩达机器学习-可选实验室:逻辑回归,决策边界(Logistic Regression,Decision Boundary))

文章目录 目标数据集图数据逻辑回归模型复习逻辑回归和决策边界绘图决策边界恭喜 目标 在本实验中&#xff0c;你将:绘制逻辑回归模型的决策边界。这会让你更好地理解模型的预测。 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from lab_utils_co…