25 使用块的网络 VGG【李沐动手学深度学习v2课程笔记】

目录

1. VGG块

2. VGG网络

3. 训练模型

4. 小结


虽然AlexNet证明深层神经网络卓有成效,但它没有提供一个通用的模板来指导后续的研究人员设计新的网络。 与芯片设计中工程师从放置晶体管到逻辑元件再到逻辑块的过程类似,神经网络架构的设计也逐渐变得更加抽象。研究人员开始从单个神经元的角度思考问题,发展到整个层,现在又转向块,重复层的模式。

使用块的想法首先出现在牛津大学的视觉几何组(visual geometry group)的VGG网络中。通过使用循环和子程序,可以很容易地在任何现代深度学习框架的代码中实现这些重复的架构。

1. VGG块

经典卷积神经网络的基本组成部分是下面的这个序列:

  1. 带填充以保持分辨率的卷积层;

  2. 非线性激活函数,如ReLU;

  3. 汇聚层,如最大汇聚层。

而一个VGG块与之类似,由一系列卷积层组成,后面再加上用于空间下采样的最大汇聚层。在最初的VGG论文中 (Simonyan and Zisserman, 2014),作者使用了带有3×3卷积核、填充为1(保持高度和宽度)的卷积层,和带有2×2汇聚窗口、步幅为2(每个块后的分辨率减半)的最大汇聚层。在下面的代码中,我们定义了一个名为vgg_block的函数来实现一个VGG块。

import torch
from torch import nn
from d2l import torch as d2ldef vgg_block(num_convs, in_channels, out_channels):layers = []for _ in range(num_convs):layers.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))layers.append(nn.ReLU())in_channels = out_channelslayers.append(nn.MaxPool2d(kernel_size=2,stride=2))return nn.Sequential(*layers)

该函数有三个参数,分别对应于卷积层的数量num_convs、输入通道的数量in_channels 和输出通道的数量out_channels.

2. VGG网络

与AlexNet、LeNet一样,VGG网络可以分为两部分:第一部分主要由卷积层和汇聚层组成,第二部分由全连接层组成。

从AlexNet到VGG,它们本质上都是块设计。

VGG神经网络连接 图7.2.1的几个VGG块(在vgg_block函数中定义)。其中有超参数变量conv_arch。该变量指定了每个VGG块里卷积层个数和输出通道数。全连接模块则与AlexNet中的相同。

原始VGG网络有5个卷积块,其中前两个块各有一个卷积层,后三个块各包含两个卷积层。 第一个模块有64个输出通道,每个后续模块将输出通道数量翻倍,直到该数字达到512。由于该网络使用8个卷积层和3个全连接层,因此它通常被称为VGG-11。

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

下面的代码实现了VGG-11。可以通过在conv_arch上执行for循环来简单实现。

def vgg(conv_arch):conv_blks = []in_channels = 1# 卷积层部分for (num_convs, out_channels) in conv_arch:conv_blks.append(vgg_block(num_convs, in_channels, out_channels))in_channels = out_channelsreturn nn.Sequential(*conv_blks, nn.Flatten(),# 全连接层部分nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),nn.Linear(4096, 10))net = vgg(conv_arch)

接下来,我们将构建一个高度和宽度为224的单通道数据样本,以观察每个层输出的形状。

X = torch.randn(size=(1, 1, 224, 224))
for blk in net:X = blk(X)print(blk.__class__.__name__,'output shape:\t',X.shape)
Sequential output shape:     torch.Size([1, 64, 112, 112])
Sequential output shape:     torch.Size([1, 128, 56, 56])
Sequential output shape:     torch.Size([1, 256, 28, 28])
Sequential output shape:     torch.Size([1, 512, 14, 14])
Sequential output shape:     torch.Size([1, 512, 7, 7])
Flatten output shape:        torch.Size([1, 25088])
Linear output shape:         torch.Size([1, 4096])
ReLU output shape:   torch.Size([1, 4096])
Dropout output shape:        torch.Size([1, 4096])
Linear output shape:         torch.Size([1, 4096])
ReLU output shape:   torch.Size([1, 4096])
Dropout output shape:        torch.Size([1, 4096])
Linear output shape:         torch.Size([1, 10])

正如从代码中所看到的,我们在每个块的高度和宽度减半,最终高度和宽度都为7。最后再展平表示,送入全连接层处理。

3. 训练模型

由于VGG-11比AlexNet计算量更大,因此我们构建了一个通道数较少的网络,足够用于训练Fashion-MNIST数据集。

ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)

除了使用略高的学习率外,模型训练过程与 7.1节中的AlexNet类似。

lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.178, train acc 0.935, test acc 0.920
2463.7 examples/sec on cuda:0

4. 小结

  • VGG-11使用可复用的卷积块构造网络。不同的VGG模型可通过每个块中卷积层数量和输出通道数量的差异来定义。

  • 块的使用导致网络定义的非常简洁。使用块可以有效地设计复杂的网络。

  • 在VGG论文中,Simonyan和Ziserman尝试了各种架构。特别是他们发现深层且窄的卷积(即3×3)比较浅层且宽的卷积更有效。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/527783.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python 网络库集锦

目录 通用网络库 网络爬虫框架 1.功能齐全的爬虫 2.其他 HTML/XML解析器 1.通用 2.清理 文本处理 自然语言处理 浏览器自动化与仿真 多重处理 异步网络编程库 队列 云计算 网页内容提取 WebSocket DNS解析 计算机视觉 通用网络库 1.urllib -网络库(stdlib)。…

深度学习armv8/armv9 cache的原理

文章目录 1、为什么要用cache?2、背景:架构的变化?2、cache的层级关系 ––big.LITTLE架构(A53为例)3、cache的层级关系 –-- DynamIQ架构(A76为例)4、DSU / L3 cache5、L1/L2/L3 cache都是多大呢6、cache相关的术语介绍7、cache的分配策略(alocation,…

通信-CAN-00 标准概述

总结了下CAN的基本知识,实际CAN的标准,内容,工具使用,上位机开发,下位机开发等,后续会找时间慢慢更新。本文主要介绍CAN标准,并对11898进行了进一步的介绍。 1 CAN概念 CAN-Controller Area N…

网站维护3年15000元,贵不贵?市场价多少

一般来说,给公司做好网站上线之后,网站就进入了运维期间,某功力公司给客户收费3年15000元网站运维费用,到底高不高呢? 首先,来看看网站运维都有哪些项目 网站运维涉及多个项目和任务,包括但不限…

大华IPC网络摄像机如何保存视频

一、背景 通常网络相机(IPC)不会自带存储功能,需要接入录像机(NVR)进行保存。 其中NVR也分软件存储及硬件存储,这里不提,这边单独说FTP存储 二、配置前提 要配置FTP存储需要:①网络…

Java开发从入门到精通(一):Java的进阶语法知识

Java大数据开发和安全开发 Java的方法1.1 方法是什么1.1.1 方法的定义1.1.2 方法如何执行?1.1.3 方法定义时注意点1.1.4 使用方法的好处是? 1.2 方法的多种形式1.2.1 无参数 无返回值1.2.2 有参数 无返回值 1.3 方法使用时的常见问题1.4 方法的设计案例1.4.1 计算1-n的和1.4.…

针对娃哈哈和农夫山泉,AI是如何看待的

娃哈哈和农夫山泉事件是中国饮料行业的两个重要事件。娃哈哈和农夫山泉都是中国知名的饮料品牌,两者之间的竞争一直存在。以下是对这两个事件的介绍: 1. 娃哈哈事件:娃哈哈是中国最大的饮料生产企业之一,也是中国最具影响力的品牌…

pytorch实现分割模型TransUNet

TransUNet是一个非常经典的图像分割模型。该模型出现在Transformer引入图像领域的早期,所以结构比较简单,但是实际上效果却比很多后续花哨的模型更好。所以有必要捋一遍pytorch实现TransUNet的整体流程。 首先,按照惯例,先看一下…

动态规划(蓝桥杯 C++ 题目 代码 注解)

目录 介绍: 题目一(数字三角形): 题目二(跳跃): 题目三(背包问题类型): 题目四(蓝肽子序列): 题目五(合唱…

什么是微隔离技术?

微隔离产生的背景 首先来看下南北向流量以及东西向流量的含义 南北向流量 指通过网关进出数据中心的流量,在云计算数据中心,处于用户业务虚拟机(容器)跟外部网络之间的流量,一般来说防火墙等安全设备部署在数…

单文件组件SFC及Vue CLI脚手架的安装使用

单文件组件SFC及Vue CLI脚手架的安装使用 Vue 单文件组件(又名 *.vue 文件,缩写为 SFC)是一种特殊的文件格式,它允许将 Vue 组件的模板、逻辑 与 样式封装在单个文件中。 为什么要使用 SFC 使用 SFC 必须使用构建工具&#xff…

Linux 进程程序替换

💓博主CSDN主页:麻辣韭菜-CSDN博客💓   ⏩专栏分类:http://t.csdnimg.cn/G90eI⏪   🚚代码仓库:Linux: Linux日常代码练习🚚   🌹关注我🫵带你学习更多Linux知识   🔝&#x1f5…