B+树 和 跳表 的结构及区别,不同的用途【mysql的索引为什么使用B+树而不使用跳表?】

导语:
详解B+树与跳表的结构及区别,描述B+树与跳表新增数据的过程,解释MySQL与Redis选择对应结构的原因。

mysql数据表里直接遍历这一行行数据,性能就是O(n),比较慢。为了加速查询,使用了B+树来做索引,将查询性能优化到了O(lg(n))

但问题就来了,查询数据性能在 lg(n) 级别的数据结构有很多,比如redis的zset里用到的跳表,也是lg(n),并且实现还贼简单。
那为什么mysql的索引,不使用跳表呢?

1. B+树的结构

一般B+树是由多个页组成的多层级结构,每个页16Kb,对于主键索引来说,最末级的叶子结点放行数据非叶子结点放的则是索引信息(主键id和页号),用于加速查询。看下B+树的结构,如下图:
在这里插入图片描述
比如说我们想要查找行数据5。会先从顶层页的record们入手。record里包含了主键id和页号(页地址)。关注黄色的箭头,向左最小id是1,向右最小id是7。那id=5的数据如果存在,那必定在左边箭头。于是顺着的record的页地址就到了6号数据页里,再判断id=5>4,所以肯定在右边的数据页里,于是加载105号数据页。

在105号数据页里,虽然有多行数据,但也不是挨个遍历的,数据页内还有个页目录的信息,它可以通过二分查找的方式加速查询行数据,于是找到id=5的数据行,完成查询。

从上面可以看出,B+树利用了空间换时间的方式(构造了一批非叶子结点用于存放索引信息),将查询时间复杂度从O(n)优化为O(lg(n))

2. 跳表的结构

接下来看一下跳表的结构。

为了存储一行行的数据。可以将它们用链表串起来。如下图:

在这里插入图片描述

如果想要查询链表中的其中一个结点,时间复杂度是O(n),这谁顶得住,于是将部分链表结点提出来,再构建出一个新的链表。

在这里插入图片描述

这样当想要查询一个数据的时候,我先查上层的链表,就很容易知道数据落在哪个范围,然后跳到下一个层级里进行查询。这样就把搜索范围一下子缩小了一大半。

比如查询id=10的数据,我们先在上层遍历,依次判断1,6,12,很快就可以判断出10在6到12之间,然后往下一跳,就可以在遍历6,7,8,9,10之后,确定id=10的位置。直接将查询范围从原来的1到10,变成现在的1,6,7,8,9,10,算是砍半了。

在这里插入图片描述
既然两层链表就直接将查询范围砍半了,那多加几层,岂不妙哉?

于是跳表就这样变成了多层。

在这里插入图片描述

如果还是查询id=10的数据,就只需要查询1,6,9,10就能找到,比两层的时候更快一些。

在这里插入图片描述

所以,跳表也是通过牺牲空间换取时间的方式提升查询性能。时间复杂度都是lg(n)。

3. B+树与跳表的区别

从上面结果可以看到,B+树和跳表的最下面一层,都包含了所有的数据,且都是顺序的,适合用于范围查询。往上的层级都是构建出来用于提升搜索性能的。这两者实在是太像了。但他们两者在新增和删除数据时,还是有些区别的。下面以新增数据为例解释一下。

3.1 B+树新增数据会如何?

B+树本质上是一种多叉平衡二叉树。关键在于"平衡"这两个字,对于多叉树结构来说,它的含义是子树们的高度层级尽量一致(一般最多差一个层级),这样在搜索的时候,不管是到哪个子树分支,搜索次数都差不了太多。

当数据库表不断插入新的数据时,为了维持B+树的平衡,B+树会不断分裂调整数据页。

B+树分为叶子结点和非叶子结点。当插入一条数据时,叶子结点和它上层的索引结点(非叶子结点)最大容量都是16k,它们都有可能会满。

加入一条数据,根据数据页会不会满,分为三种情况:

  • 叶子结点和索引结点都没满:这种情况最简单,直接插入到叶子结点中即可

在这里插入图片描述

  • 叶子结点满了,但索引结点没满:此时需要拆分叶子结点,同时索引结点要增加新的索引信息。
    在这里插入图片描述
  • 叶子结点满了,且索引结点也满了:叶子和索引结点都要拆分,同时往上还要再加一层索引。
    在这里插入图片描述

从上面可以看到,只有在叶子和索引结点都满了的情况下,B+树才会考虑加入一层新的结点。

如果,把三层B+树塞满,那大概需要2kw左右的数据。

3.2 跳表新增数据会如何?

跳表同样也是很多层,新增一个数据时,最底层的链表需要插入数据。此时,是否需要在上面的几层中加入数据做索引呢?这个就纯靠随机函数了。

理论上为了达到二分的效果,每一层的结点数需要是下一层结点数的二分之一。也就是说现在有一个新的数据插入了,它有50%的概率需要在第二层加入索引,有25%的概率需要在第三层加个索引,以此类推,直到最顶层

举个例子:如果跳表中插入数据id=6,且随机函数返回第三层(有25%的概率),那就需要在跳表的最底层到第三层都插入数据。

在这里插入图片描述
如果这个随机函数设计成上面这样,当数据量样本足够大的时候,数据的分布就符合我们理想中的"二分"。

跟上面B+树不一样,跳表是否新增层数,纯粹靠随机函数,根本不关心前后上下结点

4.mysql的索引为什么使用B+树而不使用跳表?

B+树是多叉树结构,每个结点都是一个16k的数据页,能存放较多索引信息,所以扇出很高。三层左右就可以存储2kw左右的数据。也就是说查询一次数据,如果这些数据页都在磁盘里,那么最多需要查询三次磁盘IO

跳表是链表结构,一条数据一个结点,如果最底层要存放2kw数据,且每次查询都要能达到二分查找的效果,2kw大概在2的24次方左右,所以,跳表大概高度在24层左右。最坏情况下,这24层数据会分散在不同的数据页里,也即是查一次数据会经历24次磁盘IO

因此存放同样量级的数据,B+树的高度比跳表的要少,如果放在mysql数据库上来说,就是磁盘IO次数更少,因此B+树查询更快

而针对写操作,B+树需要拆分合并索引数据页,跳表则独立插入,并根据随机函数确定层数,没有旋转和维持平衡的开销,因此跳表的写入性能会比B+树要好

其实,mysql的存储引擎是可以换的,以前是myisam,后来才有的innodb,它们底层索引用的都是B+树。也就是说,你完全可以造一个索引为跳表的存储引擎装到mysql里。事实上,facebook造了个rocksDB的存储引擎,里面就用了跳表。直接说结论,它的写入性能确实是比innodb要好,但读性能确实比innodb要差不少。

5. redis为什么使用跳表而不使用B+树或二叉树呢?

redis支持多种数据结构,里面有个有序集合,也叫ZSET。内部实现就是跳表。那为什么要用跳表而不用B+树等结构呢?

这个几乎每次面试都要被问一下。(虽然已经很熟了,但每次都要装作之前没想过,现场思考一下才知道答案。真的,很考验演技。)

大家知道,redis 是纯纯的内存数据库。进行读写数据都是操作内存,跟磁盘没啥关系,因此也不存在磁盘IO了,所以层高就不再是跳表的劣势了。

并且前面也提到B+树是有一系列合并拆分操作的,换成红黑树或者其他AVL树的话也是各种旋转,目的也是为了保持树的平衡
而跳表插入数据时,只需要随机一下,就知道自己要不要往上加索引,根本不用考虑前后结点的感受,也就少了旋转平衡的开销

因此,redis选了跳表,而不是B+树。

总结

  • B+树是多叉平衡搜索树,扇出高,只需要3层左右就能存放2kw左右的数据,同样情况下跳表则需要24层左右,假设层高对应磁盘IO,那么B+树的读性能会比跳表要好,因此mysql选了B+树做索引
  • redis的读写全在内存里进行操作,不涉及磁盘IO,同时跳表实现简单,相比B+树、AVL树、少了旋转树结构的开销,因此redis使用跳表来实现ZSET,而不是树结构。
  • 存储引擎RocksDB内部使用了跳表,对比使用B+树的innodb,虽然写性能更好,但读性能属实差了些。在读多写少的场景下,B+树依旧很强。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/527892.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1572.矩阵对角线元素的和

刷算法题: 第一遍:1.看5分钟,没思路看题解 2.通过题解改进自己的解法,并且要写每行的注释以及自己的思路。 3.思考自己做到了题解的哪一步,下次怎么才能做对(总结方法) 4.整理到自己的自媒体平台。 5.再刷重复的类…

ENVI必须会教程—Landsat卫星的加载与波段读取

实验4:读取Landsat影像 目的:了解Landsat影像读取方法,熟悉各波段及组合 过程: Landsat7影像: ①单波段影像加载:打开ENVI软件,点击文件,从文件打开准备好的L7数据,发…

MybatisPlus 学习笔记

1 . 快速入门 1 . 1 环境准备 导入数据库 导入基础项目 : 1.2.快速开始 比如我们要实现User表的CRUD,只需要下面几步: 引入MybatisPlus依赖 定义Mapper 1.2.1引入依赖 MybatisPlus提供了starter,实现了自动Mybatis以及MybatisPlus的自…

Axure原型设计项目效果 全国职业院校技能大赛物联网应用开发赛项项目原型设计题目

目录 前言 一、2022年任务书3效果图 二、2022年任务书5效果图 三、2022年国赛正式赛卷 四、2023年国赛第一套样题 五、2023年国赛第二套样题 六、2023年国赛第三套样题 七、2023年国赛第四套样题 八、2023年国赛第七套样题 九、2023年国赛正式赛题(第八套…

python单例模式应用之pymongo连接

文章目录 单例模式介绍模块简介安装简单的连接使用单例模式的连接单例类的实现配置的使用单例模式的测试 单例连接的调用 https://gitee.com/allen-huang/python 单例模式介绍 适用场景: 单例模式只允许创建一个对象,因此节省内存,加快对象访…

第二十二周周报

论文研读:Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image 粗读10篇文献。 通过图2 我可以知道这个论文大概实现的这个姿态估计效果的方法,首先是把图片输入到DetectNet网络,该网络…

面具安装LSP模块时提示 Unzip error错误的解决办法

面具(Magisk Delta)安装LSP模块时提示 Unzip error错误的解决办法 ​​ 如果前面的配置都正常的话,可能是LSP版本有问题重新去Github下载一个最新版的吧;我是这么解决的。 我安装1.91那个版本的LSP就是死活安装不上,下载了1.92的版本一次就…

OpenGrok代码服务器搭建,解决代码检索慢的问题

一、背景 在前一家公司,公司提供了OpenGrok服务器供大家检索查阅代码。但在新公司,大家都使用vscode或Sourse Insight,这就存在一些问题: 不能跳转或者跳转比较慢。 搜索查询速度慢,且结果展示不易查看。 这严重影…

给 spyter/all-spark-notebook 添加scala支持

spyter/all-spark-notebook默认没有安装scala notebook,需要手动添加。 你可以创建一个新的 Dockerfile,在其中添加你需要的配置和组件。以下是一个简单的例子: FROM jupyter/all-spark-notebook:x86_64-ubuntu-22.04 #冒号后可以是latest&a…

OpenHarmony教程指南-性能示例

介绍 本示例集成了条件渲染、动态加载以及HiDumper等场景来介绍如何提升应用性能。 效果预览 HiDumper使用说明: 1.点击性能示例主页的HiDumper按钮,进入HiDumper查看组件信息场景页。 1.点击HiDumper查看组件信息场景页的查看应用组件树进入场景页。…

10个高级的 SQL 查询技巧

1.常见表表达式(CTEs) 如果您想要查询子查询,那就是CTEs施展身手的时候 - CTEs基本上创建了一个临时表。 使用常用表表达式(CTEs)是模块化和分解代码的好方法,与您将文章分解为几个段落的方式相同。 请在…

YOLOv8原创二次改进DCNv3结构:即插即用|使用纯pytorch代码实现,不需要CUDA编译,并针对YOLOv8专门优化模块,基于可变形卷积的超强变种

💡本篇内容:YOLOv8原创改进DCNv3结构:即插即用|使用纯pytorch代码实现,不需要CUDA编译,并针对YOLOv8专门优化模块,基于可变形卷积的超强变种,优势:不需要编译! 💡附改进源代码及教程,用来改进🚀 DCNv3可变形网络结构 VisDrone有效涨点 关键词:DCNv3网络改进…