【动态规划】代码随想录算法训练营第四十四天 |完全背包,518. 零钱兑换 II , 377. 组合总和 Ⅳ (待补充)

完全背包理论基础

完全背包

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件

同样leetcode上没有纯完全背包问题,都是需要完全背包的各种应用,需要转化成完全背包问题,所以我这里还是以纯完全背包问题进行讲解理论和原理。

在下面的讲解中,我依然举这个例子:

背包最大重量为4。

物品为:

重量

价值

物品0

1

15

物品1

3

20

物品2

4

30

每件商品都有无限个!

问背包能背的物品最大价值是多少?

01背包和完全背包唯一不同就是体现在遍历顺序上,所以本文就不去做动规五部曲了,我们直接针对遍历顺序经行分析!

关于01背包我如下两篇已经进行深入分析了:

  • 动态规划:关于01背包问题,你该了解这些!(opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)

首先再回顾一下01背包的核心代码

for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:

// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}
}

至于为什么,我在动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)中也做了讲解。

dp状态图如下:

相信很多同学看网上的文章,关于完全背包介绍基本就到为止了。

其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?

这个问题很多题解关于这里都是轻描淡写就略过了,大家都默认 遍历物品在外层,遍历背包容量在内层,好像本应该如此一样,那么为什么呢?

难道就不能遍历背包容量在外层,遍历物品在内层?

看过这两篇的话:

  • 动态规划:关于01背包问题,你该了解这些!(opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)

就知道了,01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。

在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!

因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。

遍历物品在外层循环,遍历背包容量在内层循环,状态如图:

遍历背包容量在外层循环,遍历物品在内层循环,状态如图:

看了这两个图,大家就会理解,完全背包中,两个for循环的先后循序,都不影响计算dp[j]所需要的值(这个值就是下标j之前所对应的dp[j])。

先遍历背包在遍历物品,代码如下:

// 先遍历背包,再遍历物品
for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量for(int i = 0; i < weight.size(); i++) { // 遍历物品if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}cout << endl;
}

完整的C++测试代码如下:

// 先遍历物品,在遍历背包
void test_CompletePack() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagWeight = 4;vector<int> dp(bagWeight + 1, 0);for(int i = 0; i < weight.size(); i++) { // 遍历物品for(int j = weight[i]; j <= bagWeight; j++) { // 遍历背包容量dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bagWeight] << endl;
}
int main() {test_CompletePack();
}

// 先遍历背包,再遍历物品
void test_CompletePack() {vector<int> weight = {1, 3, 4};vector<int> value = {15, 20, 30};int bagWeight = 4;vector<int> dp(bagWeight + 1, 0);for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量for(int i = 0; i < weight.size(); i++) { // 遍历物品if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bagWeight] << endl;
}
int main() {test_CompletePack();
}

本题力扣上没有原题,大家可以去卡码网第52题(opens new window)去练习,题意是一样的,C++代码如下:

#include <iostream>
#include <vector>
using namespace std;// 先遍历背包,再遍历物品
void test_CompletePack(vector<int> weight, vector<int> value, int bagWeight) {vector<int> dp(bagWeight + 1, 0);for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量for(int i = 0; i < weight.size(); i++) { // 遍历物品if (j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);}}cout << dp[bagWeight] << endl;
}
int main() {int N, V;cin >> N >> V;vector<int> weight;vector<int> value;for (int i = 0; i < N; i++) {int w;int v;cin >> w >> v;weight.push_back(w);value.push_back(v);}test_CompletePack(weight, value, V);return 0;
}

#总结

细心的同学可能发现,全文我说的都是对于纯完全背包问题,其for循环的先后循环是可以颠倒的!

但如果题目稍稍有点变化,就会体现在遍历顺序上。

如果问装满背包有几种方式的话? 那么两个for循环的先后顺序就有很大区别了,而leetcode上的题目都是这种稍有变化的类型。

这个区别,我将在后面讲解具体leetcode题目中给大家介绍,因为这块如果不结合具题目,单纯的介绍原理估计很多同学会越看越懵!

别急,下一篇就是了!

最后,又可以出一道面试题了,就是纯完全背包,要求先用二维dp数组实现,然后再用一维dp数组实现,最后再问,两个for循环的先后是否可以颠倒?为什么? 这个简单的完全背包问题,估计就可以难住不少候选人了。

518.零钱兑换II

1、题目链接:. - 力扣(LeetCode)

2、文章讲解:代码随想录

3、题目:

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

  • 输入: amount = 5, coins = [1, 2, 5]
  • 输出: 4

解释: 有四种方式可以凑成总金额:

  • 5=5
  • 5=2+2+1
  • 5=2+1+1+1
  • 5=1+1+1+1+1

示例 2:

  • 输入: amount = 3, coins = [2]
  • 输出: 0
  • 解释: 只用面额2的硬币不能凑成总金额3。

示例 3:

  • 输入: amount = 10, coins = [10]
  • 输出: 1

注意,你可以假设:

  • 0 <= amount (总金额) <= 5000
  • 1 <= coin (硬币面额) <= 5000
  • 硬币种类不超过 500 种
  • 结果符合 32 位符号整数

4、视频链接:

动态规划之完全背包,装满背包有多少种方法?组合与排列有讲究!| LeetCode:518.零钱兑换II_哔哩哔哩_bilibili

class Solution {public int change(int amount, int[] coins) {//递推表达式int[] dp = new int[amount + 1];//初始化dp数组,表示金额为0时只有一种情况,也就是什么都不装dp[0] = 1;for (int i = 0; i < coins.length; i++) {for (int j = coins[i]; j <= amount; j++) {dp[j] += dp[j - coins[i]];}}return dp[amount];}
}

377. 组合总和 Ⅳ

1、题目链接:. - 力扣(LeetCode)

2、文章讲解:代码随想录

3、题目:

给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。

示例:

  • nums = [1, 2, 3]
  • target = 4

所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)

请注意,顺序不同的序列被视作不同的组合。

因此输出为 7。

4、视频链接:

动态规划之完全背包,装满背包有几种方法?求排列数?| LeetCode:377.组合总和IV_哔哩哔哩_bilibili

class Solution {public int combinationSum4(int[] nums, int target) {int[] dp = new int[target + 1];dp[0] = 1;for (int i = 0; i <= target; i++) {for (int j = 0; j < nums.length; j++) {if (i >= nums[j]) {dp[i] += dp[i - nums[j]];}}}return dp[target];}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/527996.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker镜像及Dockerfile详解

1 Docker镜像用途 统一应用发布的标准格式支撑一个Docker容器的运行 2 Docker镜像的创建方法 基于已有镜像创建基于本地模板创建基于Dockerfile创建 &#xff08;实际环境中用的最多&#xff09; 2.1 基于已有镜像的创建 将容器里面运行的程序及运行环境打包生成新的镜像 …

基于斑翠鸟优化算法(Pied Kingfisher Optimizer ,PKO)的无人机三维路径规划(MATLAB)

一、无人机路径规划模型介绍 二、算法介绍 斑翠鸟优化算法&#xff08;Pied Kingfisher Optimizer ,PKO&#xff09;&#xff0c;是由Abdelazim Hussien于2024年提出的一种基于群体的新型元启发式算法&#xff0c;它从自然界中观察到的斑翠鸟独特的狩猎行为和共生关系中汲取灵…

总结:Spring创建Bean循环依赖问题与@Lazy注解使用详解

总结&#xff1a;Spring创建Bean循环依赖问题与Lazy注解使用详解 一前提知识储备&#xff1a;1.Spring Bean生命周期机制&#xff08;IOC&#xff09;2.Spring依赖注入机制&#xff08;DI&#xff09;&#xff08;1&#xff09;Autowired注解标注属性set方法注入&#xff08;2&…

【你也能从零基础学会网站开发】Web建站之javascript入门篇 Function函数详解

&#x1f680; 个人主页 极客小俊 ✍&#x1f3fb; 作者简介&#xff1a;web开发者、设计师、技术分享 &#x1f40b; 希望大家多多支持, 我们一起学习和进步&#xff01; &#x1f3c5; 欢迎评论 ❤️点赞&#x1f4ac;评论 &#x1f4c2;收藏 &#x1f4c2;加关注 函数概述 …

Python Pip 命令大全及其技术应用指南【第119篇—Pip 命令】

Python Pip 命令大全及其技术应用指南 Python 的包管理工具 Pip 是开发者们在构建、分享和安装 Python 包的重要工具之一。本文将深入介绍 Pip 命令的各种用法&#xff0c;旨在帮助开发者更好地利用 Pip 管理项目依赖、安装库和进行版本控制。 1. Pip 安装与升级 首先&#x…

202109 CSP认证 | 脉冲神经网络

3. 脉冲神经网络 好久之前第一次写的时候完全对第三题没感觉&#xff0c;提交上去得了个0 分… 这次自己再写了一遍&#xff0c;花的时间不多&#xff0c;写的时候感觉逻辑也不是特别难。最后是超时了&#xff0c;感觉第三题开始涉及到优化了&#xff0c;不仅仅是暴力模拟就可以…

查看pip当前关联python版本及位置

好久没用python了&#xff0c;把各种pip指向的环境忘光光啦&#xff0c;这里记录一下查看pip当前关联的python版本及位置的方法&#xff1a; pip -V结果&#xff1a; 我一般不用这个版本的python&#xff0c;去环境变量看了一下&#xff0c;原来是anaconda的Scripts自带pip&a…

VUE_自适应布局lib-flexible+postcss-pxtorem、lib-flexible + postcss-px2rem,nuxt页面自适配

lib-flexible postcss-pxtorem适配 我采用的是flexable.js和postcss-pxtorem。我一开始用的是postcss-px2rem后来发现和nuxt引入公共css的时候发生了冲突所以改用了postcss-pxtorem。 安装依赖 npm i lib-flexible -S npm install postcss-pxtorem --save 1、lib-flexible.…

Spring Boot 面试题及答案整理,最新面试题

Spring Boot中的自动配置是如何工作的&#xff1f; Spring Boot的自动配置是其核心特性之一&#xff0c;它通过以下方式工作&#xff1a; 1、EnableAutoConfiguration注解&#xff1a; 这个注解告诉Spring Boot开始查找添加了Configuration注解的类&#xff0c;并自动配置它们…

突破编程_前端_JS编程实例(目录导航)

1 开发目标 目录导航组件旨在提供一个滚动目录导航功能&#xff0c;使得用户可以方便地通过点击目录条目快速定位到对应的内容标题位置&#xff0c;同时也能够随着滚动条的移动动态显示当前位置在目录中的位置&#xff1a; 2 详细需求 2.1 标题提取与目录生成 组件需要能够自…

Java 中的 File 类常用方法介绍

Java 中的 File 类是 java.io 包的一部分&#xff0c;它提供了丰富的文件操作方法。File 类可以用来表示文件和目录路径名的抽象表示形式&#xff0c;即它可以用来获取文件或目录的属性&#xff0c;也可以用来创建、删除、重命名文件和目录。下面是一些常用的 File 类方法&…

JavaEE+springboot教学仪器设备管理系统o9b00-springmvc

本文旨在设计一款基于Java技术的教学仪器设备销售网站&#xff0c;以提高网站性能、功能完善、用户体验等方面的优势&#xff0c;解决现有教学仪器设备销售网站的问题&#xff0c;并为广大教育工作者和学生提供便捷的教学仪器设备销售渠道。本文首先介绍了Java技术的相关基础知…