每周一算法:A*(A Star)算法

八数码难题

题目描述

3 × 3 3\times 3 3×3 的棋盘上,摆有八个棋子,每个棋子上标有 1 1 1 8 8 8 的某一数字。棋盘中留有一个空格,空格用 0 0 0 来表示。空格周围的棋子可以移到空格中。要求解的问题是:给出一种初始布局(初始状态)和目标布局(为了使题目简单,设目标状态为 123804765 123804765 123804765),找到一种最少步骤的移动方法,实现从初始布局到目标布局的转变。

输入格式

输入初始状态,一行九个数字,空格用 0 0 0 表示。

输出格式

只有一行,该行只有一个数字,表示从初始状态到目标状态需要的最少移动次数。保证测试数据中无特殊无法到达目标状态数据。

样例 #1

样例输入 #1

283104765

样例输出 #1

4

提示

样例解释

图中标有 0 0 0 的是空格。绿色格子是空格所在位置,橙色格子是下一步可以移动到空格的位置。如图所示,用四步可以达到目标状态。

并且可以证明,不存在更优的策略。

广度优先搜索

算法思想

根据题目描述,输入一个棋盘的初始状态,求从初始状态到目标状态需要的最少移动次数,可以用广度优先搜索求解,基本思想如下:

  • 将初始状态 start \text{start} start的移动步数设为 0 0 0,然后将其加入队列
  • 只要队列不为空
    • 从队首取出一个状态 state \text{state} state
    • 如果 state = end \text{state}=\text{end} state=end结束状态,则搜索结束,返回到达的 state \text{state} state移动步数
    • 否则,找到 state \text{state} state中字符 0 0 0的位置,向相邻方向进行扩展
      • 如果扩展到一个新的状态,则计算扩展到新状态的步数,并将新状态加入队列

代码实现

#include <bits/stdc++.h>
using namespace std;
queue<string> q;
unordered_map<string,int> dis;int dx[]={-1, 1, 0, 0}, dy[]={0, 0, -1, 1};int bfs(string start)
{string end = "123804765";dis[start] = 0;q.push(start);while(!q.empty()){string state = q.front(); q.pop();int step = dis[state];if(state == end) return step;int k = state.find('0'); //在当前状态的字符串中找到字符0int x = k / 3, y = k % 3; //将字符串中的位置转换为矩阵中的坐标for(int i = 0; i < 4; i ++){int a = x + dx[i], b = y + dy[i]; if(a < 0 || a >= 3 || b < 0 || b >= 3) continue; //越界swap(state[k], state[a * 3 + b]); //将数字字符与0进行交换,转移到新状态if(!dis.count(state)) //没有访问过{ dis[state] = step + 1; //转移到state状态的最小步数q.push(state); //入队}swap(state[k], state[a * 3 + b]); //恢复现场,交换回来,为下次转移做准备}}return -1;
}int main()
{string start;char c;for(int i = 0; i < 9; i ++){cin >> c;start += c;}cout << bfs(start) << endl;return 0;
}

A*算法

通过BFS可以发现,对每个状态都可以将 0 0 0向上右下左四个方向进行扩展,在最坏情况下要搜索的状态空间为 4 9 4^9 49,指数级别,搜索的效率比较低。在这种情况下,可以使用A*算法进行求解。

A*(A Star)算法是一种很常用的路径查找和图形遍历算法,它有较好的性能和准确度。

A*算法通过下面的函数来计算每个状态的优先级:

f ( n ) = g ( n ) + h ( n ) f(n)=g(n) + h(n) f(n)=g(n)+h(n)
其中:

  • f ( n ) f(n) f(n)是当前状态 n n n综合优先级。当选择下一个要扩展的状态时,我们总会选取综合优先级最高(值最小)的状态。
  • g ( n ) g(n) g(n)是状态距离起点(初始状态)的代价
  • h ( n ) h(n) h(n)是状态 n n n距离终点(目标状态)的预计代价,这也就是A*算法的启发函数

算法思想

A*算法与BFS类似,不同之处在于A*算法使用优先队列,选取 f ( n ) f(n) f(n)值最小(优先级最高)的状态作为下一个待扩展的状态。基本思想如下:

  • 将初始状态 start \text{start} start的移动步数设为 0 0 0,然后其综合优先级初始状态加入优先队列
  • 只要队列不为空
    • 取出优先队列中综合优先级最高(值最小)的状态 state \text{state} state
    • 如果 state = end \text{state}=\text{end} state=end结束状态,则搜索结束,返回到达的 state \text{state} state移动步数
    • 否则,找到 state \text{state} state中字符 0 0 0的位置,向相邻方向进行扩展
      • 如果扩展到一个新状态,或者到达该状态的步数减少,将状态的综合优先级和状态本身继续加入优先队列

启发函数

从算法的基本思想可以看出来,启发函数会影响A*算法的行为。

  • 在极端情况下,当启发函数 h ( n ) h(n) h(n)为0时,则将由 g ( n ) g(n) g(n)决定状态的优先级,此时算法就退化成了Dijkstra算法。
  • 如果 h ( n ) h(n) h(n)始终小于等于状态 n n n到终点的代价,则A*算法保证一定能够找到最短路径。但是当 h ( n ) h(n) h(n)的值越小,算法将遍历越多的状态,也就导致算法越慢。
  • 如果 h ( n ) h(n) h(n)完全等于状态 n n n到终点的代价,则A*算法将找到最佳路径,并且速度很快。可惜的是,并非所有场景下都能做到这一点。因为在没有达到终点之前,很难确切算出距离终点还有多远。
  • 如果 h ( n ) h(n) h(n)的值比状态 n n n到终点的代价要大,则A*算法不能保证找到最短路径,不过此时会很快。

通过调节启发函数我们可以控制算法的速度和精确度。因为在一些情况,可能未必需要最短路径,而是希望能够尽快找到一个路径即可,这也是A*算法比较灵活的地方。

对于网格形式的图,有以下这些启发函数可以使用:

  • 如果图形中只允许朝上下左右四个方向移动,则可以使用曼哈顿距离(Manhattan distance)。
  • 如果图形中允许朝八个方向移动,则可以使用对角距离。
  • 如果图形中允许朝任何方向移动,则可以使用欧几里得距离(Euclidean distance)。

代码实现

#include <iostream>
#include <algorithm>
#include <queue>
#include <unordered_map>
using namespace std;
typedef pair<int, string> PIS;
int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
//启发函数取当前状态中每个数字与其目标位置的曼哈顿距离之和
int h(string state)
{int res = 0;for(int i = 0; i < state.size(); i ++){if(state[i] != '0'){int t = state[i] - '1';res += abs(i / 3 - t / 3) + abs(i % 3 - t % 3); //累加每个数字到其正确位置的曼哈顿距离}}return res;
}
int astar(string start)
{string end = "123804765";priority_queue<PIS, vector<PIS>, greater<PIS>> heap; //小顶堆unordered_map<string, int> dis; //记录到达每一种状态的步数//g(start)返回起点到终点的预估距离heap.push({0 + h(start), start});dis[start] = 0;while(heap.size()){PIS t = heap.top(); heap.pop();string state = t.second;if(state == end) break; //终点第一次出队,搜索结束int step = dis[state];int k = state.find('0'); //找到0所在位置int x = k / 3, y = k % 3; for(int i = 0; i < 4; i ++){int a = x + dx[i], b = y + dy[i];if(a < 0 || a >= 3 || b < 0 || b >= 3) continue;swap(state[x * 3 + y], state[a * 3 + b]); //将0和目标交换if(!dis.count(state) || dis[state] > step + 1) //如果扩展到一个新的状态,或者能够缩短到state的距离{dis[state] = step + 1;heap.push({dis[state] + h(state), state}); //将综合优先级和状态加入优先队列}swap(state[x * 3 + y], state[a * 3 + b]);//恢复现场}}return dis[end];
}
int main()
{char c;string start;for(int i = 0; i < 9; i ++){cin >> c;start += c;}cout << astar(start);return 0;
}

相关练习

洛谷P2324:骑士精神

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/529358.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ELFK 分布式日志收集系统

ELFK的组成&#xff1a; Elasticsearch: 它是一个分布式的搜索和分析引擎&#xff0c;它可以用来存储和索引大量的日志数据&#xff0c;并提供强大的搜索和分析功能。 &#xff08;java语言开发&#xff0c;&#xff09;logstash: 是一个用于日志收集&#xff0c;处理和传输的…

基于Java+springboot+VUE+redis实现的前后端分类版网上商城项目

基于Java springbootVUEredis实现的前后端分类版网上商城项目 博主介绍&#xff1a;多年java开发经验&#xff0c;专注Java开发、定制、远程、文档编写指导等,csdn特邀作者、专注于Java技术领域 作者主页 央顺技术团队 Java毕设项目精品实战案例《1000套》 欢迎点赞 收藏 ⭐留言…

Babel:现代JavaScript的桥梁

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

力扣--动态规划/回溯算法131.分割回文串

思路分析&#xff1a; 动态规划 (DP)&#xff1a; 使用动态规划数组 dp&#xff0c;其中 dp[i][j] 表示从字符串 s[i] 到 s[j] 是否为回文子串。预处理动态规划数组&#xff1a; 从字符串末尾开始&#xff0c;遍历每个字符组合&#xff0c;判断是否为回文子串&#xff0c;填充…

python 导入excel空间三维坐标 生成三维曲面地形图 5-3、线条平滑曲面且可通过面观察柱体变化(三)

环境 python:python-3.12.0-amd64 包: matplotlib 3.8.2 pandas 2.1.4 openpyxl 3.1.2 scipy 1.12.0 import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import griddata from matplotlib.c…

2024年最新指南:如何订阅Midjourney(详尽步骤解析)

前言&#xff1a; Midjourney是一个基于人工智能的图像生成工具&#xff0c;它使用高级算法来创建独特和复杂的图像。这个工具能够根据用户输入的文字描述生成对应的图片。Midjourney的特点在于它能够处理非常抽象或者具体的描述&#xff0c;生成高质量、富有创意的视觉内容。M…

命名实体识别,根据实体计算准确率、召回率和F1

文章目录 简介数据格式介绍准确率、召回率和F1评估评估代码评估结果 进一步阅读参考 简介 使用大模型训练完命名实体识别的模型后&#xff0c;发现不知道怎么评估实体识别的准确率、召回率和F1。于是便自己实现了代码&#xff0c;同时提供了完整可运行的项目代码。 完整代码&…

java SSM科研管理系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM科研管理系统是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S…

【JAVA】基于HTML与CSS的尚品汇项目

1.代码 index.html <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><!-- 引入页签图标 --><link rel"shortcut icon"…

深入了解 AVL 树

引言&#xff1a; AVL 树是一种自平衡二叉搜索树&#xff0c;它能够保持树的平衡性&#xff0c;从而提高了搜索、插入和删除操作的效率。在本文中&#xff0c;我们将深入探讨 AVL 树的概念、使用场景&#xff0c;并通过 Java 实现一个简单的 AVL 树。 一、AVL 树的概念 AVL 树是…

计算机设计大赛 疲劳驾驶检测系统 python

文章目录 0 前言1 课题背景2 Dlib人脸识别2.1 简介2.2 Dlib优点2.3 相关代码2.4 人脸数据库2.5 人脸录入加识别效果 3 疲劳检测算法3.1 眼睛检测算法3.2 打哈欠检测算法3.3 点头检测算法 4 PyQt54.1 简介4.2相关界面代码 5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#x…

【RAG】Chain-of-Verification Reduces Hallucination in LLM

note 百川智能还参考Meta的CoVe&#xff08;Chain-of-Verification Reduces Hallucination in Large Language Models&#xff09;技术&#xff0c;将真实场景的用户复杂问题拆分成多个独立可并行检索的子结构问题&#xff0c;从而让大模型可以针对每个子问题进行定向的知识库…