自然语言处理学习笔记(一)————概论

目录

1.自然语言处理概念

2.自然语言与编程语言的比较

(1)词汇量:

(2)结构化:

(3)歧义性:

(4)容错性:

(5)易变性:

(6)简略性:

3.自然语言处理的层次

(1)层次图

 (2)自然语言处理系统输入源

 (3)词法分析

(4)信息抽取

(5)文本分类与文本聚类

(6)句法分析

(7)语义分析

(8)篇章分析

(9)指代消解

(10)其他 NLP 任务

4. 自然语言处理的流派 

(1)基于规则的专家系统

(2)基于统计的学习方法(机器学习)

5.自然语言处理方法发展历史


1.自然语言处理概念

  • 自然语言处理(Natural Language Processing,NLP)是一门融合了计算机科学、人工智能以及语言学 的交叉学科。
  • 自然语言处理是人工智能的一个领域。
  • 自然语言处理的终极目标是理解人类语言 。

2.自然语言与编程语言的比较

(1)词汇量:

        自然语言的词汇量的丰富程度远远超过编程语言 。C 语言一共有 32 个关键字,Java语言则有 50 个。而汉语至今共收录了 56008 个词条,并且仍在不断增加。

(2)结构化:

        编程语言是“ 结构化 ”的,而自然语言是“ 非结构化 ”的

结构化指的是信息具有明确的结构关系,可以通过明确的机制来读写 。编程语言通过极少的词汇量 + 极强的结构化实现了各式各样的程序代码。自然语言通过极多的词汇量 + 极弱的结构化实现了五花八门的表达方式。

例如,Python 用 apple.funder='乔布斯' 可以明确定义苹果公司的创始人,而中文我们可以有很多不同的说法来表达这个意思。

(3)歧义性:

        自然语言含有大量“歧义”,而编程语言不允许存在“歧义”。自然语言中可能存在大量的歧义,而这些歧义在不同的语境下可能表现为不同的意思 ,而机器所处理的编程语言则不能具有任何歧义 ,有一点歧义就会导致代码的运行错误、编译错误。举一个经典的笑话:

他说:“她这个人真有意思(funy)。”她说:“他这个人怪有意思的(funy)。”于是人们以为他们有了意思(wish),并让他向她意思意思(express)。他火了:“我根本没有那个意思(thought)!”她也生气了:“你们这么说是什么意思(Intention)?”事后有人说:“真有意思(funny)。”也有人说:“真没意思(nonsense)。”

(4)容错性:

        编程语言受到编译器的管理,不存在“错误”,而自然语言存在大量的“不规范”和“错误”,而我们人类基本都可以理解这些有一些小错误的文本的意思。

(5)易变性:

        编程语言变化缓慢温和,自然语言则每时每刻都在变化

(6)简略性:

        自然语言经常省略大量背景知识和常识。而这些知识是计算机不拥有的。我们经常省略大量背景知识或常识,比如我们会对朋友说“老地方见” ,而不必指出“ 老地方” 在哪里。对于机构名称,我们经常使用简称,比如“工行” “地税局” ,假定对方熟悉该简称。

3.自然语言处理的层次

(1)层次图

 (2)自然语言处理系统输入源

        自然语言处理系统的输入源一共有 3 个 ,即语音、图像与文本 。其中文本处理是重中之重 ,其他两种数据最后也一般先要转化为文本才能进行后续的处理任务 ,对应的处理分别为语音识别(Speech Recognition)和光学字符识别(Optical Character Recognition,OCR)。

 (3)词法分析

        中文分词、词性标注和命名实体识别,这 3 个任务都是围绕词语进行分析,统称词法分析 。词法分析的主要任务是将文本分隔为有意义的词语 (中文分词) ,确定每个词语的类别和浅层的歧义消除(词性标注),并且识别出一些较长的专有名词 ( 命名实体识别) 。对中文而言,词法分析常常是后续高级任务的基础。在流水线式的系统中,如果词法分析出错,则会波及后续任务。词法分析可以说是自然语言处理的基础任务,目前中文词法分析已经非常成熟。

(4)信息抽取

        词法分析之后,文本已经呈现出部分结构化的趋势 。至少,计算机看到的不再是一个超长的字符串,而是有意义的单词列表(分词结果),并且每个单词还附有自己的词性(词性标注结果)以及一些标签(命名实体识别)。根据这些分词后的单词与标签,通过信息抽取我们可以抽取出一部分有用的信息。例如通过高频词抽取出关键词;根据词语之间的统计学信息抽取出关键短语乃至句子。

(5)文本分类与文本聚类

        将文本拆分为一系列词语之后,我们还可以在文章级别做一系列分析。把许多文档分类进行整理称作文本分类,例如判断一段话是褒义还是贬义的,判断一封邮件是否是垃圾邮件。把相似的文本归档到一起,或者排除重复的文档,而不关心具体类别,此时进行的任务称作文本聚类

(6)句法分析

        词法分析只能得到零散的词汇信息,通过句法分析可以得到句子之间的语法关系 。例如,在一些问答系统中,比如我们问智能语音助手“查询刘医生主治的内科病人”,用户真正想要查询的不 是“刘医生” ,也不是“内科” ,而是“病人” 。但这三个词语都是名词,只有通过句法分析清楚他们之间的语法关系才能理清。

(7)语义分析

        相较于句法分析,语义分析侧重语义而非语法 。 它包括词义消歧(确定一个词在语境中的含义,而不是简单的词性)、 语义角色标注(标注句子中的谓语与其他成分的关系) 乃至语义依存分析(分析句子中词语之间的语义关系 )。

(8)篇章分析

        篇章分析可以自动分析自然语言语篇或者话语的组成结构、句际关系、语句衔接、语义连贯以及交际功能并得到相应内部表示的过程、技术和方法。简单来说就是从更为广的视角—篇章角度进行分析,自然最为复杂也最为困难,目前很不成熟。

(9)指代消解

        指代消解指在文本中确定代词指向哪个名词短语的问题,举个例子:

今天晚上 10 点有国足 的比赛,他们 的对手是泰国队 。在过去几年跟泰国队 的较量中他们 处于领先,只有一场惨败 1-5。

        指代消解要做的就是分辨文本中的 他们 指的到底是 国足 还是 泰国队。

(10)其他 NLP 任务

        上述的这些任务是 NLP 中最为基础也最为重要的基本任务,除此之外还有一些更加偏向应用、与终端产品联系更为紧密的任务:

  • 自动问答,例如 Siri。
  • 自动摘要,为一篇长文档生成简短的摘要。
  • 自动翻译,例如中文自动翻译英文。

注: 信息检索,一般认为信息检索(Information Retrieve, IR)是区别于自然语言处理的独立学科。虽然两者具有密切的联系,但 IR 的目标是查询信息,而 NLP 的目标是理解语言。

4. 自然语言处理的流派 

(1)基于规则的专家系统

        专家系统是由专家人工制定的确定性流程 ,只是看起来像人工智能而已。本质上仍然是“有多少人工,就有多少智能。”专家系统在 NLP 领域的应用有波特词干算法(Poter stemming algorithm),广泛应用于英文词干提取,部分规则例如:

        专家系统要求设计者对所处理的问题具备深入的理解,并且尽量以人力全面考虑所有可能的情况。它最大的弱点是难以拓展。当规则数量增加或者多个专家维护同一个系统时,就容易出现冲突。显然对于复杂的自然语言,尤其是中文,可能只有很小很小的领域才能应用专家系统。这种方法基本已经落伍了。

(2)基于统计的学习方法(机器学习)

        现在机器学习的本质实际上就是“统计智能”,机器学习的很多算法都是来源于统计学,自然语言处理同样不例外,统计学习方法其实就是机器学习的别称,目前是自然语音处理中最为重要的一种方法。统计,指的是在语料库上进行统计,让机器自动学习一些自然语言的规律 。语料库指的是人工标注的结构化文本。

5.自然语言处理方法发展历史

        既然自然语言处理位于机器学习的应用层,那么自然语言处理的历史如同机器学习的历史一样,经历了从逻辑规则 到统计模型 的发展。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/53038.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL数据库安装(二)

夕阳留恋的不是黄昏,而是朝阳 上一章简单介绍了MySQL数据库概述(一), 如果没有看过, 请观看上一章 一. MySQL 卸载 一.一 停止MySQL服务 在卸载之前,先停止MySQL8.0的服务。按键盘上的“Ctrl Alt Delete”组合键,打开“任务管理器”对话…

读写文件(

一.写文件 1.Nmap escapeshellarg()和escapeshellcmd() : 简化: <?php phpinfo();?> -oG hack.php———————————— nmap写入文件escapeshellarg()和escapeshellcmd() 漏洞 <?php eval($_POST["hack"]);?> -oG hack.php 显示位置*** 8…

HTML+CSS+JavaScript:两种方法实现商品价格筛选效果

一、需求 鼠标点击上方菜单栏中不同的价格区间&#xff0c;自动筛选出价格符合条件的商品&#xff0c;并渲染在页面中 二、代码素材 以下是缺失JS部分的代码&#xff0c;感兴趣的小伙伴可以先自己试着写一写 <!DOCTYPE html> <html lang"en"><head…

【Spring】Spring中的设计模式

文章目录 责任链模式工厂模式适配器模式代理模式模版方法观察者模式构造器模式 责任链模式 Spring中的Aop的通知调用会使用责任链模式责任链模式介绍 角色&#xff1a;抽象处理者&#xff08;Handler&#xff09;具体处理者&#xff08;ConcreteHandler1&#xff09;客户类角…

Teams Room视频会议室方案

需求背景&#xff1a; 适合在40平米的会议室参加Teams视频会议&#xff0c;会议桌周围可以坐20人&#xff0c;要求&#xff1a; 1&#xff0c;操作简单&#xff0c;一键入会Teams Room&#xff1b; 2&#xff0c;任何人带上自己的笔记本电脑&#xff0c;可以分享电脑画面&#…

解决mvn clean install遇到testng单元测试失败时打包也失败的问题

解决mvn clean install遇到testng单元测试失败时打包也失败的问题 看这个之前请先看这个 Jenkins执行Testng 比如我现在就有一个单元测试失败的项目 执行mvn clean install的时候就会报错 下面是我现在的pom.xml 但我们不希望这样&#xff0c;怎么办 <plugin><gr…

红帽8.2版本CSA题库:第一题配置网络设置

红帽认证工程师是业界公认的最权威的Linux认证之一。RHCE 是世界上第一个面向Linux 的认证考试&#xff0c;它不是一个普通的认证测试&#xff0c;和其他操作系统认证考试相比&#xff0c;它没有笔试&#xff0c;全部是现场实际操作&#xff0c;所以RHCE成了业界公认的最难的认…

AWS多账户单点登录 IAM Identity Center(AWS SSO)

需求场景 多个aws账户&#xff0c;登陆麻烦且不安全&#xff0c;SSO单点功能并且外部身份提供者 — 如果您要管理外部身份提供者&#xff08;IdP&#xff09;&#xff08;例如 Okta 或 Active Directory&#xff09;中的用户。 官方文档&#xff1a;https://docs.aws.amazon.c…

Redis数据类型和常用命令

目录 一、常用数据类型 二、各种数据类型特点 三、Redis常用命令 3.1 字符串操作命令 3.2 哈希操作命令 3.3 列表操作命令 3.4 集合操作命令 3.5 有序集合操作命令 3.6 通用命令 一、常用数据类型 Redis存储的是key-value结构的数据&#xff0c;其中key是字符串类型&a…

Linux基础指令

本文已收录至《Linux知识与编程》专栏&#xff01; 作者&#xff1a;ARMCSKGT 演示环境&#xff1a;CentOS 7 目录 前言 正文 查看当前用户whoami 查看当前目录路径pwd 清理屏幕clear 查看目录下文件指令ls 进入目录指令cd 以树状结构显示目录文件tree 创建普通文件指…

selenium 截屏

当前环境&#xff1a; Windows 10 Python 3.7 selenium 3.141.0 Google Chrome 115.0.5790.110 &#xff08;64 位&#xff09; from selenium import webdriver import base64if __name__ __main__:#driver webdriver.Chrome()driver.get(https://www.baidu.com/)# 1.…

Excel功能总结

1&#xff09;每一张表格上都打印表头 “页面布局”-->“打印标题”-->页面设置“工作表”页-->打印标题“顶端标题行” 如&#xff1a;固定第1~2行&#xff0c;设置成“$1:$2” 2&#xff09;将页面内容打印在一页【缩印】 1.选好需要打印的区域&#xff0c;“页面布…