数字孪生10个技术栈:数据清洗-数据的洗衣机

大家好,我是贝格前端工场,上期讲了数据传输的四个问题,本期继续分享数据采集后如何获得格式化的有效数据,那就是数据清洗,大家如有数字孪生或者数据可视化的需求,可以联络我们。

一、数据清洗含义和所需工作

在可视化大屏中,数据清洗指的是对原始数据进行处理和筛选,以确保数据的准确性、完整性和一致性。数据清洗是数据预处理的一部分,它包括以下几个方面的工作:

  1. 缺失值处理:检测和处理数据中的缺失值,可以通过填充缺失值、删除缺失值或使用插值等方法来处理。
  2. 异常值处理:检测和处理数据中的异常值,可以通过删除异常值、替换异常值或使用统计方法来处理。
  3. 数据格式转换:将数据转换为正确的格式,例如将字符串转换为数字、日期转换为标准格式等。

  1. 数据去重:检测和删除数据中的重复值,以确保数据的唯一性。
  2. 数据标准化:对数据进行标准化处理,以确保数据在相同的尺度上进行比较和分析。
  3. 数据关联和合并:将多个数据源中的数据进行关联和合并,以便进行综合分析和可视化展示。

通过进行数据清洗,可以提高数据的质量和准确性,减少数据分析和可视化过程中的误差和偏差,使可视化大屏呈现的数据更加可靠和可信。


二、为什么做数据清洗

数据清洗在数据分析和可视化过程中扮演着重要的角色,原因如下:

  1. 提高数据质量:数据清洗可以帮助检测和处理数据中的错误、缺失值、异常值和重复值,从而提高数据的准确性和完整性。清洗后的数据更加可靠,可以减少分析和决策过程中的误差和偏差。
  2. 保证数据一致性:数据清洗可以确保数据在不同数据源之间的一致性。通过对数据进行标准化、转换和合并,可以消除不同数据源之间的格式差异和数据冲突,使数据在可视化大屏中的展示更加统一和准确。

  1. 支持数据分析和决策:清洗后的数据更加适合进行数据分析和决策。通过清洗,可以消除数据中的噪声和干扰,突出数据的关键特征和趋势,为数据分析和决策提供更有意义和可靠的依据。
  2. 提高可视化效果:清洗后的数据可以更好地支持可视化展示。清洗可以使数据更加规范和一致,减少数据在可视化过程中的混乱和误导性。清洗后的数据可以更好地呈现在可视化大屏上,提供更清晰、易懂和有价值的信息。

综上所述,数据清洗是确保数据质量、数据一致性和数据可靠性的重要步骤,对于数据分析和可视化的准确性和有效性起着至关重要的作用。

三、数据清洗的方式有哪些

数据清洗可以使用多种方式进行,具体选择的方式取决于数据的特点和清洗的目标。以下是常见的数据清洗方式:

1、缺失值处理:处理数据中的缺失值,可以采用以下方式:

  • 删除缺失值:如果缺失值较少且对分析结果的影响较小,可以选择删除包含缺失值的行或列。
  • 填充缺失值:可以使用插值、均值、中位数、众数等方法来填充缺失值。

2、异常值处理:处理数据中的异常值,可以采用以下方式:

  • 删除异常值:如果异常值是数据录入错误或测量误差导致的,可以选择删除异常值。
  • 替换异常值:可以使用平均值、中位数、截断值等来替换异常值,使其更接近正常范围。

3数据格式转换:将数据转换为正确的格式,可以采用以下方式:

  • 类型转换:将字符串转换为数字、日期转换为标准格式等。
  • 格式化:对数据进行格式化处理,使其符合特定的规范和要求。
  1. 数据去重:检测和删除数据中的重复值,可以采用以下方式:
  • 基于某一列或多列进行去重:根据指定的列,删除重复的行。
  • 基于整个数据集进行去重:删除整个数据集中重复的行。

  1. 数据标准化:对数据进行标准化处理,可以采用以下方式:
  • 最小-最大标准化:将数据缩放到指定的范围内,如0到1之间。
  • Z-score标准化:将数据转换为均值为0、标准差为1的分布。
  1. 数据关联和合并:将多个数据源中的数据进行关联和合并,可以采用以下方式:
  • 基于共同字段进行关联:通过共同的字段将不同数据源的数据进行关联。
  • 使用连接操作进行合并:使用连接操作(如内连接、外连接、左连接、右连接)将不同数据源的数据合并为一个数据集

以上是常见的数据清洗方式,根据具体情况选择适合的方式进行数据清洗,以确保数据的准确性和一致性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/536720.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(学习日记)2024.03.10:UCOSIII第十二节:使用优先级的流程 (持续更新)

写在前面: 由于时间的不足与学习的碎片化,写博客变得有些奢侈。 但是对于记录学习(忘了以后能快速复习)的渴望一天天变得强烈。 既然如此 不如以天为单位,以时间为顺序,仅仅将博客当做一个知识学习的目录&a…

LeetCode 2864. 最大二进制奇数

文章目录 LeetCode 2864. 最大二进制奇数思路1AC CODE思路2AC CODE LeetCode 2864. 最大二进制奇数 题目链接:https://leetcode.cn/problems/maximum-odd-binary-number/description/ 思路1 由于二进制基数的最后一位必须是1,而其他位越大越好&#xf…

今日AI:GPT-4.5意外曝光可能6月发布、UP主借AI识别情绪播放量186万、全球首个AI程序员诞生

欢迎来到【今日AI】栏目!这里是你每天探索人工智能世界的指南,每天我们为你呈现AI领域的热点内容,聚焦开发者,助你洞悉技术趋势、了解创新AI产品应用。 新鲜AI产品点击了解:AIbase - 智能匹配最适合您的AI产品和网站 📢一分钟速…

Ypay源支付6.9无授权聚合免签系统可运营源码

YPay是一款专为个人站长设计的聚合免签系统,YPay基于高性能的ThinkPHP 6.1.2 Layui PearAdmin架构,提供了实时监控和管理的功能,让您随时随地掌握系统运营情况。 说明 Ypay源支付6.9无授权聚合免签系统可运营源码 已搭建测试无加密版本…

JS:36种原生JS数组方法(8种改变原数组方法,28种不涉及数组改变的方法)

一、改变原数组方法 1.push() 作用&#xff1a;向数组的末尾添加一个或多个元素 返回&#xff1a;添加后数组的长度。 <script>let arr [1, 2, 3];console.log(arr.push(4)); //4console.log(arr); //[1, 2, 3, 4]console.log(arr.push(2, 4)); //6console.log(arr);…

Excel判断CD两列在EF两列的列表中是否存在

需求 需要将CD两列的ID和NAME组合起来&#xff0c;查询EF两列的ID和NAME组合起来的列表中是否存在&#xff1f; 比如&#xff0c;判断第二行的“123456ABC”在EF的第二行到第四行中是否存在&#xff0c;若存在则显示Y&#xff0c;不存在则显示N 实现的计算公式 IF(ISNUMBER…

全视智慧机构养老解决方案,以科技守护长者安全

2024年2月28日凌晨1时许&#xff0c;在上海浦东大道的一家养护院四楼杂物间内发生了一起火灾事故。尽管火势不大&#xff0c;过火面积仅为2平方米&#xff0c;但这场小火却造成了1人死亡和3人受伤的悲剧。这一事件再次提醒我们&#xff0c;养老院作为老年人聚集的场所&#xff…

plt保存PDF矢量文件中嵌入可编辑字体(可illustrator编辑)

背景&#xff1a; 用默认 plt.savefig() 保存图片&#xff0c;图中文字是以瞄点保存&#xff0c;而不是以文字格式。在编辑矢量图中&#xff0c;无法调整文字大小和字体。 方法&#xff1a; import matplotlib.pyplot as plt import numpy as np# ------输出的图片为illustr…

SSA-LSTM多输入分类预测 | 樽海鞘优化算法-长短期神经网络 | Matlab

目录 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 亮点与优势&#xff1a; 二、实际运行效果&#xff1a; 三、算法介绍&#xff1a; 四、完整程序下载&#xff1a; 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 本代码基于Matlab平台编译&am…

F.岛屿个数【蓝桥杯】/dfs+环

岛屿个数 小蓝得到了一副大小为 M N 的格子地图&#xff0c;可以将其视作一个只包含字符‘0’&#xff08;代表海水&#xff09;和 ‘1’&#xff08;代表陆地&#xff09;的二维数组&#xff0c;地图之外可以视作全部是海水&#xff0c;每个岛屿由在上/下/左/右四个方向上相…

191基于matlab的信号谱估计

基于matlab的信号谱估计&#xff0c;间接法双谱估计 &#xff0c;bispeci返回用间接法从有限个观测信号中估计出的双谱bispec&#xff0c;并且用等高线图显示。直接法双谱估计 &#xff0c;bispecd返回估计双谱矩阵&#xff0c;原点在中心&#xff0c;轴的方向是向下与向右 。程…

2024腾讯云轻量主机地域怎么选择?上海/北京/广州哪个地域好?

腾讯云轻量应用服务器地域如何选择&#xff1f;地域就近选择&#xff0c;北方选北京地域、南方选广州地域&#xff0c;华东地区选上海地域。广州上海北京地域有什么区别&#xff1f;哪个好&#xff1f;区别就是城市地理位置不同&#xff0c;其他的差不多&#xff0c;不区分好坏…