实战 | 基于YOLOv9和OpenCV实现车辆跟踪计数(步骤 + 源码)

导  读

    本文主要介绍使用YOLOv9和OpenCV实现车辆跟踪计数(步骤 + 源码)。      

实现步骤

图片

    监控摄像头可以有效地用于各种场景下的车辆计数和交通流量统计。先进的计算机视觉技术(例如对象检测和跟踪)可应用于监控录像,以识别和跟踪车辆在摄像机视野中移动。

【1】安装ultralytics,因为它拥有直接使用 YoloV9 预训练模型的方法。

pip install ultralytics

【2】完成后,就可以创建跟踪器函数来跟踪对象了。我们只是为此创建了一个名为tracker.py的python文件。

import math
class CustomTracker:    def __init__(self):        # Store the center positions of the objects        self.custom_center_points = {}        # Keep the count of the IDs        # each time a new object id detected, the count will increase by one        self.custom_id_count = 0
    def custom_update(self, custom_objects_rect):        # Objects boxes and ids        custom_objects_bbs_ids = []
        # Get center point of new object        for custom_rect in custom_objects_rect:            x, y, w, h = custom_rect            cx = (x + x + w) // 2            cy = (y + y + h) // 2
            # Find out if that object was detected already            same_object_detected = False            for custom_id, pt in self.custom_center_points.items():                dist = math.hypot(cx - pt[0], cy - pt[1])
                if dist < 35:                    self.custom_center_points[custom_id] = (cx, cy)                    custom_objects_bbs_ids.append([x, y, w, h, custom_id])                    same_object_detected = True                    break
            # New object is detected we assign the ID to that object            if same_object_detected is False:                self.custom_center_points[self.custom_id_count] = (cx, cy)                custom_objects_bbs_ids.append([x, y, w, h, self.custom_id_count])                self.custom_id_count += 1
        # Clean the dictionary by center points to remove IDS not used anymore        new_custom_center_points = {}        for custom_obj_bb_id in custom_objects_bbs_ids:            _, _, _, _, custom_object_id = custom_obj_bb_id            center = self.custom_center_points[custom_object_id]            new_custom_center_points[custom_object_id] = center
        # Update dictionary with IDs not used removed        self.custom_center_points = new_custom_center_points.copy()        return custom_objects_bbs_ids

【3】编写车辆计数的主要代码。​​​​​​​

# Import the Librariesimport cv2import pandas as pdfrom ultralytics import YOLOfrom tracker import *

    导入所有必要的库后,就可以导入模型了。我们不必从任何存储库下载模型。Ultralytics 做得非常出色,让我们可以更轻松地直接下载它们。

model=YOLO('yolov9c.pt')

    这会将 yolov9c.pt 模型下载到当前目录中。该模型已经在由 80 个不同类别组成的 COCO 数据集上进行了训练。现在让我们指定类:​​​​​​​

class_list = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',              'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter',              'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',              'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',              'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',              'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog',              'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop',              'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book',              'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']

现在,下一步是加载您要使用的视频。​​​​​​​

tracker=CustomTracker()count=0
cap = cv2.VideoCapture('traffictrim.mp4')
# Get video propertiesfps = int(cap.get(cv2.CAP_PROP_FPS))width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Create VideoWriter object to save the modified framesoutput_video_path = 'output_video.mp4'fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # You can use other codecs like 'XVID' based on your systemout = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))

在这里,我们在加载视频后获取视频属性,因为它们对于使用计数器重新创建视频并最终将其存储在本地非常有用。​​​​​​​

# Looping over each frame and Performing the Detection
down = {}counter_down = set()while True:    ret, frame = cap.read()    if not ret:        break    count += 1
    results = model.predict(frame)
    a = results[0].boxes.data    a = a.detach().cpu().numpy()    px = pd.DataFrame(a).astype("float")    # print(px)
    list = []
    for index, row in px.iterrows():        #        print(row)        x1 = int(row[0])        y1 = int(row[1])        x2 = int(row[2])        y2 = int(row[3])        d = int(row[5])        c = class_list[d]        if 'car' in c:            list.append([x1, y1, x2, y2])
    bbox_id = tracker.custom_update(list)    # print(bbox_id)    for bbox in bbox_id:        x3, y3, x4, y4, id = bbox        cx = int(x3 + x4) // 2        cy = int(y3 + y4) // 2        # cv2.circle(frame,(cx,cy),4,(0,0,255),-1) #draw ceter points of bounding box        # cv2.rectangle(frame, (x3, y3), (x4, y4), (0, 255, 0), 2)  # Draw bounding box        # cv2.putText(frame,str(id),(cx,cy),cv2.FONT_HERSHEY_COMPLEX,0.8,(0,255,255),2)
        y = 308        offset = 7
        ''' condition for red line '''        if y < (cy + offset) and y > (cy - offset):            ''' this if condition is putting the id and the circle on the object when the center of the object touched the red line.'''
            down[id] = cy  # cy is current position. saving the ids of the cars which are touching the red line first.            # This will tell us the travelling direction of the car.            if id in down:                cv2.circle(frame, (cx, cy), 4, (0, 0, 255), -1)                #cv2.putText(frame, str(id), (cx, cy), cv2.FONT_HERSHEY_COMPLEX, 0.8, (0, 255, 255), 2)                counter_down.add(id)
                # # line    text_color = (255, 255, 255)  # white color for text    red_color = (0, 0, 255)  # (B, G, R)
    # print(down)    cv2.line(frame, (282, 308), (1004, 308), red_color, 3)  # starting cordinates and end of line cordinates    cv2.putText(frame, ('red line'), (280, 308), cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1, cv2.LINE_AA)    downwards = (len(counter_down))    cv2.putText(frame, ('Vehicle Counter - ') + str(downwards), (60, 40), cv2.FONT_HERSHEY_SIMPLEX, 0.5, red_color, 1,                cv2.LINE_AA)
    cv2.line(frame,(282,308),(1004,308),red_color,3)  #  starting cordinates and end of line cordinates    cv2.putText(frame,('red line'),(280,308),cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color, 1, cv2.LINE_AA)        # This will write the Output Video to the location specified above    out.write(frame)

    在上面的代码中,我们循环遍历视频中的每个帧,然后进行检测。然后,由于我们仅对车辆进行计数,因此仅过滤掉汽车的检测结果。

    之后,我们找到检测到的车辆的中心,然后在它们穿过人工创建的红线时对它们进行计数。我们可以在下面的视频快照中清楚地看到它们。

图片

图片

图片

图片

图片

我们可以看到,当车辆越过红线时,视频左上角的计数器不断增加。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/537121.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软考高级:需求变更管理过程概念和例题

作者&#xff1a;明明如月学长&#xff0c; CSDN 博客专家&#xff0c;大厂高级 Java 工程师&#xff0c;《性能优化方法论》作者、《解锁大厂思维&#xff1a;剖析《阿里巴巴Java开发手册》》、《再学经典&#xff1a;《Effective Java》独家解析》专栏作者。 热门文章推荐&am…

IMX8MM -- Yocto构建遇见的错误及解决方法:

IMX8MM Yocto构建遇见的错误及解决方法&#xff1a; 1 bison-3.0.4 error2 Opencv BB_NO_NETWORK Error &#xff1a;3 Yocto构建时出现U-boot 问题4 Yocto构建时出现Linux kernel编译问题5 wayland-native6 cross-localedef-native7 wayland-protocols8 mesa 硬件&#xff1a;…

JAVA初阶数据结构栈(工程文件后续会上传)(+专栏数据结构练习是完整版)

1.栈的概念讲解(Stack)&#xff09; 定义&#xff1a;栈是一种先进后出的数据结构 要想拿到12就要把它头上的所有东西给移出去 2.栈的实现&#xff08;代码&#xff09; 2.1栈的方法逻辑的讲解 &#xff08;1&#xff09;新建一个测试类Frank &#xff08;2&#xff09;进…

借助ChatGPT提高编程效率指南

PS: ChatGPT无限次数&#xff0c;无需魔法&#xff0c;登录即可使用,网页打开下面 一、借助ChatGPT提高编程效率指南 随着计算机技术的飞速发展&#xff0c;编程已经成为了现代社会中一个非常重要的技能。对于许多人来说&#xff0c;编程不仅是一项工作技能&#xff0c;而且是…

【linux】搜索所有目录和子目录下的包含.git的文件并删除

一、linux命令搜索所有目录和子目录下的包含.git的文件 在Linux系统中&#xff0c;要搜索所有目录和子目录下的包含.git的文件&#xff0c;可以使用find命令。find命令允许指定路径、表达式和操作来查找文件。 以下是使用find命令搜索包含.git的文件的方法&#xff1a; 1. 基…

《高效便捷,探索快递柜系统架构的智慧之路》

随着电商业务的蓬勃发展&#xff0c;快递柜系统作为一种高效、便捷的最后一公里配送解决方案&#xff0c;正在受到越来越多企业和消费者的青睐。本篇博客将深入探讨快递柜系统的架构设计理念、优势和实践&#xff0c;帮助读者了解如何构建智能化的快递柜系统&#xff0c;提升物…

STM32平替GD32有多方便

众所周知, GD32一直模仿STM32,从未被超越。 我最近公司使用的GD32E230C6T6 这款芯片有48个引脚。 属于小容量的芯片。 我有一个用STM32写的代码,之前是用的 STM32F103CB 这款芯片是中容量的。 不过在keil中,只需要这两步,就能使用原来的逻辑,几乎不用修改代码。 1. …

《智能便利,畅享便利柜平台的架构奇妙之旅》

便利柜平台作为一种智能化、便捷的自助服务解决方案&#xff0c;正在逐渐走进人们的生活。本篇博客将深入探讨便利柜平台的架构设计理念、优势和实践&#xff0c;帮助读者了解如何构建智能便利柜平台&#xff0c;提供更便捷的自助服务体验。 ### 便利柜平台架构设计 #### 1. …

网络编程-套接字相关基础知识

1.1. Socket简介 套接字&#xff08;socket&#xff09;是一种通信机制&#xff0c;凭借这种机制&#xff0c; 客户端<->服务器 模型的通信方式既可以在本地设备上进行&#xff0c;也可以跨网络进行。 Socket英文原意是“孔”或者“插座”的意思&#xff0c;在网络编程…

Jenkins安装部署

目录 一、CI/CD介绍 二、持续集成与持续交付 持续集成&#xff08;CI&#xff09; 持续交付&#xff08;CD&#xff09; 持续集成的组成要素 持续集成的好处 持续集成的流程 三、Gitlab简介与特点 四、Gitlab CI/CD工作原理 五、Gitlab的部署与安装 安装依赖环境 G…

docker-compose部署及使用

Docker Compose是一个用于定义和运行多个Docker容器的工具。它使用YAML文件来配置应用程序的服务、网络和卷等方面&#xff0c;使得在单个主机上进行部署更加简单。通过定义一个Compose文件&#xff0c;你可以一次性启动、停止和管理整个应用程序的多个容器。 Compose文件包含了…

【每日一题】[信息与未来 2023] 幸运数字题解(枚举 模拟)

标签&#xff1a;数位拆分、枚举、模拟题意&#xff1a;给定区间 [ a , b ] [a,b] [a,b]&#xff0c;求出区间内满足奇数位和等于偶数位和的数字个数题解&#xff1a;遍历区间内每个数字&#xff0c;统计其奇数位和与偶数位和&#xff0c;如果相等&#xff0c;计数器加一&#…