深度学习——基本数据类型创建Tensor(持续更新)

声明:本深度学习笔记基于课时18 索引与切片-1_哔哩哔哩_bilibili学习而来

All is about Tensor

定义:Tensors are simply mathematical objects that can be used to describe physical properties, just like scalars and vectors. In fact tensors are merely a generalisation of scalars and vectors; a scalar is a zero rank tensor, and a vector is a first rank tensor.

这句话的大概意思就是张量就是标量和向量的推广,标量被称为0维张量,向量被称为一维张量。

我们先将python常用的数据类型和pytorch进行比较,我们可以很清楚的看出pytorch的数据类型都加了一个张量(Tensor),但是pytorch里面并没有字符串类型,因为pytorch主要是一个关于计算的库。

但是,我们在pytorch里面就用不到字符串吗?当让不是,在数字识别体验课的时候我们是用了One-hot的编码方式,就是我们创建一个长度为10的一维向量,如果对应上了,我们就把与此对应的数值改为1。

 问题又来了,我们需要处理的数据太过庞大了,比如我们处理10万个数据,我们还要使用长度为10万的向量吗?答案,肯定不是。我们使用叫做Embedding的编码方式。

总的来说,就是讲pytorch使用编码的方式处理字符串

再回到我们的数据类型上:

我们在pytorch上使用torch.FloatTensor表示浮点型,其它类型同理。众所周知,深度学习需要处理大量的数据,需要大量的计算,为了提高效率,我们让GPU帮助我们计算,但是此时数据类型就要加上cuda了。

Type check

import torch
a = torch.randn(2,3)                # 创建一个2*3矩阵print("Tensor:",a)
# 输出:Tensor: tensor([[-0.6643, -1.7207, -0.7312],
#        [-0.9627, -0.5519, -0.7359]])print("Tensor of type:",a.type())
# 输出:Tensor of type: torch.FloatTensor# 在深度学习中,我们经常会用到参数的合理化检验,一般使用下面这个方法
isinstance(a,torch.FloatTensor)
# 输出:Ture# 不常使用的
# print(type(a))

再讲述一下pytorch默认类型的问题,以及设置默认类型的问题:

pytorch中使用tensor创建的张量默认类型为双精度类型

print(torch.tensor([1.2,3]).type())
# out:torch.DoubleTensor
# 设置默认类型:
torch.set_default_tensor_type(torch.FloatTensor)
print(torch.tensor([1.2,3]).type())
# out:torch.FloatTensor

dim

 注:tensor里面包含的就是具体的数据。

size()&shape&dim()

我觉得进行下面的学习之前,应该先搞明白size,shape,dim的概念。

shape是一个属性,在使用的时候不用加括号;size()是一个方法。其实shape和size()的作用是一样的,但是shape是numpy中array和pytorch中的tensor通用的size()只能用在tensor上。

dim()方法是计算维度的,效果和len(a.shape)一样。

a = torch.tensor([[1,2,3,0],[4,5,7,9],[7,8,5,3]])
print("shape:",a.shape)
# out:shape: torch.Size([3, 4])
print("dim:",a.dim())
# out:dim: 2
print("size:",a.size())
# out:size: torch.Size([3, 4])

 创建Tensor

1、import from numpy

# 创建Tensor
# eg1
import numpy as np
a = np.array([2,3.3])           # 先使用numpy创建dim 1  size 2 的向量
print(torch.from_numpy(a))      # 导入 
# out:tensor([2.0000, 3.3000])
#eg2
a = np.ones([2,3])              # 先使用np直接创建一个维度为2,size为3的向量
print(torch.from_numpy(a))
# out:tensor([[1., 1., 1.],
#         [1., 1., 1.]])

2、import from List

当时数据量不是很大的时候就可以使用此方法。直接使用List方法tensor接受现有数据,Tensor接受数据的维度,也可以接受现有数据。

print(torch.tensor([2.,3.2]))
# out:tensor([2.0000, 3.3000])
print(torch.tensor([[2.,3.2],[1.,22.369]]))
# out:tensor([[ 2.0000,  3.2000],
#         [ 1.0000, 22.3690]])
print(torch.FloatTensor([2.,3.2]))              # 接收数据
# out:tensor([2.0000, 3.3000])
print(torch.FloatTensor(2,3))                   # 接受维度
# out:tensor([[-2.9315e-03,  1.0272e-42, -1.5882e-23],
#         [ 2.1500e+00,  0.0000e+00,  1.8750e+00]], dtype=torch.float32)
print(torch.Tensor([2.,3.2]))
# out:tensor([2.0000, 3.3000])

但是一般在使用的时候会使用 tensor专门接受现有数据,Tensor专门接受数据的维度,这样不容易搞混。

3、uninitialized

当需要未初始化数据的时候可以使用以下几种方法。

# 以下方法生成的数据非常的不规律,需要使用数据进行覆盖
print(torch.empty(2))              # 生成一个未初始化长度为1的数据
# out:tensor([1.2697e-321, 4.9407e-324])
print(torch.Tensor(2,3))
# out:tensor([[4.9407e-324, 4.9407e-324, 4.9407e-324],
#         [4.9407e-324, 4.9407e-324, 4.9407e-324]])
print(torch.IntTensor(2,3))
# out:tensor([[-1153427456,         733,   -81441600],
#         [ 1072143930,  -588085446,  1071206672]], dtype=torch.int32)
print(torch.FloatTensor(2,3))
# out:tensor([[-2.9309e-03,  1.0272e-42, -8.5829e+35],
#         [ 1.8095e+00, -5.4613e+17,  1.6978e+00]], dtype=torch.float32)

4、rand/rand_like,randint

随机初始化,也是推荐最常使用的。

print(torch.rand(3,3))              # rand()方法随机产生0-1的数据,此时产生一个3*3的二维张量(第一维长度为3,第二维长度为3)
# out:tensor([[0.0664, 0.6562, 0.3293],
#         [0.4063, 0.8417, 0.0114],
#         [0.0279, 0.3318, 0.5429]])
a = torch.rand(3,3)
print(torch.rand_like(a))           # 作用:接受的是一个shape,会将a的shape直接读出来,再传入rand()方法
# out:tensor([[0.5812, 0.8895, 0.3767],
#         [0.3151, 0.2174, 0.5673],
#         [0.4537, 0.9913, 0.7640]])
print(torch.randint(1,10,[3,3]))    # randint()方法只能随机产生整数,此时产生一个所有元素都位于1-10的3*3的二维张量
# out:tensor([[7, 1, 3],
#         [2, 2, 8],
#         [2, 8, 6]])

如果想要均匀采样0-10的tensor,要使用x = 10*torch.rand(d1,d2),randint()只能采样整数。 

5、randn

会产生正态0,1分布的随机数。

print(torch.randn(3,3))
# out:tensor([[ 0.9438,  0.8224, -0.9046],
#         [-0.0314,  1.2954, -0.6943],
#         [ 1.0301, -0.3824, -1.0747]])
print(torch.normal(mean=torch.full([10],0.), std=torch.arange(1,0,-0.1)))
# out:tensor([-0.4060, -0.5174,  0.1747, -0.7274, -0.0309,  0.4580, -0.6965, -0.2976,
#         -0.1198,  0.0581])

normal(mean, std, *, generator=None, out=None)

返回值:一个张量,张量中每个元素是从相互独立的正态分布中随机生成的。每个正态分布的均值和标准差对应着mean中的一个值和std中的一个值。

注意:张量mean和std的形状不一定相同,但是元素个数必须相同。如果二者形状不一致,返回张量的形状和mean的一致

generator=None:用于采样的伪随机数发生器

out:输出张量的形状

6、full

print(torch.full([2,3],7))      # 创建一个全为7的2*3二维向量
# out:tensor([[7, 7, 7],
#         [7, 7, 7]])
print(torch.full([],7))         # 创建一个全为7的标量
# out:tensor(7)
print(torch.full([2],7))        # 创建一个全为7的1*2一维向量
# out:tensor([7, 7])

7、arange/range

生成递增、递减等差数列的API。

print(torch.arange(0,10))       # 生成一个从0开始,不到10的等差数列
# out:tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
print(torch.arange(0,10,2))
# out:tensor([0, 2, 4, 6, 8])
print(torch.range(0,10))        # 不推荐使用这个
# out:tensor([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.])
# C:\Users\Lenovo\AppData\Local\Temp\ipykernel_10204\2132562954.py:3: UserWarning: torch.range is deprecated and will be removed in a future release because its behavior is inconsistent with Python's range builtin. Instead, use torch.arange, which produces values in [start, end).
#   print(torch.range(0,10))

8、linspace/logspace

生成一个等差的数列。

print(torch.linspace(0,10,steps=4))         # 后面的数是指生成元素的个数
# out:tensor([ 0.0000,  3.3333,  6.6667, 10.0000])
print(torch.linspace(0,10,steps=10))
# out:tensor([ 0.0000,  1.1111,  2.2222,  3.3333,  4.4444,  5.5556,  6.6667,  7.7778,
#          8.8889, 10.0000])
print(torch.linspace(0,10,steps=11))
# out:tensor([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10.])
print(torch.logspace(0,-1,steps=10))        # 生成10个10的0次方到10的-1次方的数
# out:tensor([1.0000, 0.7743, 0.5995, 0.4642, 0.3594, 0.2783, 0.2154, 0.1668, 0.1292,
#         0.1000])
print(torch.logspace(0,1,steps=10))
# out:tensor([ 1.0000,  1.2915,  1.6681,  2.1544,  2.7826,  3.5938,  4.6416,  5.9948,
#          7.7426, 10.0000])

9、Ones/zeros/eye

生成全0,全1,是对角矩阵的。

print(torch.ones(3,3))      # 生成一个全一3*3的二维张量
# out:tensor([[1., 1., 1.],
#              [1., 1., 1.],
#              [1., 1., 1.]])
print(torch.zeros(3,3))     # 生成一个全零3*3的二维张量
# out:tensor([[0., 0., 0.],
#             [0., 0., 0.],
#             [0., 0., 0.]])
print(torch.eye(3,4))       # 生成一个近似对角矩阵
# out:tensor([[1., 0., 0., 0.],
#         [0., 1., 0., 0.],
#         [0., 0., 1., 0.]])
print(torch.eye(3))         # 生成一个对角矩阵
# out:tensor([[1., 0., 0.],
#         [0., 1., 0.],
#         [0., 0., 1.]])
a=torch.zeros(3,3)
print(torch.ones_like(a))
# out:tensor([[1., 1., 1.],
#         [1., 1., 1.],
#         [1., 1., 1.]])

10、randperm

随机打散

print(torch.randperm(10))       # 随机生成一个0-9长度为10的索引
a=torch.rand(2,3)
b=torch.rand(2,2)
idx=torch.randperm(2)
print(idx)
print(idx)
print(a[idx])                   # 这个必须和下面一句idx保持一致
print(b[idx])
print(a,b)

补充

如果a=tensor([[[0.0787, 0.8906, 0.0690], [0.1323, 0.5660, 0.2708]]]),a[0] = tensor([[0.0787, 0.8906, 0.0690], [0.1323, 0.5660, 0.2708]]),获取a中第0个元素,就是第一维度的第0个元素;a[0][0]=tensor([0.0787, 0.8906, 0.0690]),获取a中第二维度的第0个元素的第0个元素。

a = torch.randn(2,3)
print(a)
# out:tensor([[ 1.7312,  1.8919,  0.3483],
#         [ 0.6409,  1.5857, -1.4704]])
print(a.shape)          # 获取tensor的具体形状
# out:torch.Size([2, 3])
print(a.size(0))        # 获取shape的第0个元素
# out:2
print(a.size(1))        # 获取shape的第1个元素
# out:3
print(a.shape[1])       # 获取shape的第1个元素,但是注意括号的区别
# out:3
tensorData.numel()  # 具体占用内存大小

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/537678.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言黑魔法第三弹——动态内存管理

本文由于排版问题,可能稍显枯燥,但里面知识点非常详细,建议耐心阅读,帮助你更好的理解动态内存管理这一C语言大杀器 进阶C语言中有三个知识点尤为重要:指针、结构体、动态内存管理,这三个知识点决定了我们…

对GIS与游戏引擎(UE4 或 U3D)结合的看法

GIS与游戏引擎结合,这在6年前就已经很多公司在进行探索了,经过这几年的发展,结合当前的政策,从以下几方面说一下我的看法: 1.GIS客户都是特殊单位及领域。2018年后,国内已经对国产化有明确要求了&#xff0…

【Numpy】练习题100道(26-50题)

#学习笔记# 在学习神经网络的过程中发现对numpy的操作不是非常熟悉,遂找到了Numpy 100题。 Git-hub链接 1.题目列表 26. 下面的脚本输出什么?(★☆☆) print(sum(range(5),-1)) from numpy import * print(sum(range(5),-1)) 27. 考虑一个整数向量…

【更新】上市公司“宽带中国”战略数据集(2000-2022年)

参照李万利(2022)、薛成(2020)等人的做法,根据企业所在城市入选“宽带中国”试点战略的批次构建DID。如果样本期间内企业所在城市被评选为“宽带中国” 试点城市,则该地区企业样本在入选当年及以后年份取1&…

​LLM之新手入门:大预言模型的概念介绍与应用

最近,我在系统地学习大型语言模型(LLM)的相关知识。在这个学习过程中,我努力将所学的内容整理成博客文章。在这篇博客中,我首先简要介绍了人工智能的发展历史,然后探讨了大型模型的基本原理、训练方法、微调…

每日学习笔记:C++ STL 的forward_list

定义 特点 操作函数 元素查找、移除或安插 forward_list::emplace_after arg...指的是元素构造函数的参数&#xff08;0~N个&#xff09; #include <iostream> #include <memory> #include <list> #include <forward_list> using namespace std;class…

EditText不显示系统键盘,可用来显示自定义的键盘

系统键盘 包含普通键盘和现在很多ROM定制的密码安全键盘 调用已下方法即可解决: https://developer.android.google.cn/reference/android/widget/TextView#setShowSoftInputOnFocus(boolean) 但是,此方法是API 21Android 5.0加入的, 所以为了兼容低版本, 建议使用已下方法: p…

springboot整合最新版minio和minio的安装(完整教程,新人必看)

概述&#xff1a;这种东西&#xff0c;多写点&#xff0c;方便以后自己使用 目录 第一步&#xff1a;docker安装配置minio 第一步&#xff1a;拉取镜像 第二步&#xff1a;创建用于存储MinIO数据的卷 如果是最新版minio直接就使用最后的那个命令创建容器 第三步&#xff…

RabbitMQ 模拟实现【一】:需求分析

文章目录 消息队列消息队列消息队列的作用图解生产者消费者模型BrokerSever 内部涉及的关键概念交换机功能消费的实现方式数据存储方式网络通信消息应答模式 消息队列模拟实现Gitee网址 消息队列 采用 SpringBoot 框架实现 消息队列 通常说的消息队列&#xff0c;简称MQ&am…

json展示curl 请求接口返回结果

使用curl发送请求并将返回结果以JSON格式展示&#xff0c;通常需要确保请求的响应本身就是JSON格式。可以结合jq这个JSON处理工具来格式化输出。 首先要安装jq 工具。 Linux发行版中&#xff0c;你可以使用包管理器来安装它。 sudo yum install jq # 对于CentOS/RHEL 安装成…

多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测

多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测 目录 多维时序 | Matlab实现VMD-CNN-GRU变分模态分解结合卷积神经网络门控循环单元多变量时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现VMD-CN…

Unity Timeline学习笔记(3) - SignalTrack信号轨道和自定义带参数的Marker信号和轨道

信号轨道&#xff0c;顾名思义就是运行到某处发送一个信号。 普通用法 普通用法就是没有任何封装的&#xff0c;个人感觉特别难用&#xff0c;但是有必要理解一下工作原理。 添加信号 我们添加一个信号资源 生成后可以看到资源文件&#xff0c;这个是可以拖到SignalTrack上…