Java推荐算法——特征加权推荐算法(以申请学校为例)

加权推荐算法

文章目录

  • 加权推荐算法
    • 1.推荐算法的简单介绍
    • 2.加权推荐算法详细介绍
    • 3.代码实现
    • 4.总结


1.推荐算法的简单介绍

众所周知,推荐算法有很多种,例如:

1.加权推荐:分为简单的特征加权,以及复杂的混合加权。主要是将特征以权重进行计算总和,排序出前几名的数据,即最符合条件的数据,推荐给用户。

2.内容基推荐:这种方法基于物品的特征。系统会分析用户过去喜欢的物品特征,然后找到具有类似特征的其他物品推荐给用户。这种方法依赖于对物品内容的深入理解,比如文本、图像或音频特征。

比如我想买【华为手机】,但是系统中关于华为手机的商品很少,在用户继续浏览的过程中,就会根据华为手机属于【手机】类的这个特征,推荐其他【手机】类型的商品。

3.协同过滤推荐:分为物品基协同过滤用户基协同过滤
简单描述一下【用户基协同过滤】。
如果一个用户A喜欢某个物品,那么这个系统会找到与用户A相似的其他用户B,然后将B喜欢的、A还未接触的物品推荐给A。

2.加权推荐算法详细介绍

本次探讨的就是简单的特征加权,以留学申请为例简单描述一下:
比如留学申请的过程中中有几个重要特征参数:所在国家、全球QS排名、专业。
那么当我想选择:{英国,前10,计算机}这样的数据时,一般会怎么查呢?是不是精确查询了?在数据库中找到英国+QS前10+计算机这样的数据返回给用户。
在这里插入图片描述

但是在面对数据较少的时候,显示给用户的数据就太少了,比如我上面展示的,只有2条数据符合要求。
那如果我想每次用户搜索完成后,最少都要展示10条数据呢?
这样就需要在精确搜索进行改进了,改为【特征加权推荐】,以国家、专业、QS排名三个为特征,设置权重,对数据库中的数据进行计算,获取前10个得分最高的数据展示。

这样就可以推荐出用户也“可能”喜欢的院校了,比如就推荐出了美国高校的计算机专业。
在这里插入图片描述

3.代码实现

实现代码示例如下:
加权推荐的算法部分
首先我们需要准备留学专业的java实体类。

package com.ride.system.domain;import org.apache.commons.lang3.builder.ToStringBuilder;
import org.apache.commons.lang3.builder.ToStringStyle;
import com.ride.system.common.core.domain.BaseEntity;/*** 留学专业信息对象 sys_study_abroad**/
public class SysStudyAbroad extends BaseEntity
{private static final long serialVersionUID = 1L;/** 主键 */private Long studyAbroadId;/** 国家 */private String country;/** 专业 */private String major;/** QS排名 */private String qs;// 推荐加权得分private Double score;public Double getScore() {return score;}public void setScore(Double score) {this.score = score;}public String getQs() {return qs;}public void setQs(String qs) {this.qs = qs;}public String getCountry() {return country;}public void setCountry(String country) {this.country = country;}public SysMajor getMajor() {return major;}public void setMajor(SysMajor major) {this.major = major;}
}

接下来,编写推荐算法的函数

/*** 加权平均推荐算法* @param userInput 用户输入* @param majors 留学专业列表,即数据库中全部专业数据* @param weights 权重规则* @return*/
public static List<SysStudyAbroad> weightedRecommendation(SysStudyAbroad userInput, List<SysStudyAbroad> majors, Map<String, Double> weights) {List<SysStudyAbroad> recommendations = new ArrayList<>();for (SysStudyAbroad major : majors) {double score = 0;// 计算每个权重的得分// 如果满足一个要求,则得1分,否则0分。double countrySimilarity = userInput.getCountry().equals(major.getCountry()) ? 1 : 0;double majorSimilarity = userInput.getMajor().equals(major.getMajor()) ? 1 : 0;double qsRankSimilarity = Math.abs(Integer.parseInt(userInput.getQs()) - Integer.parseInt(major.getQs())) >= 0 ? 1: 0;// 加权得分综合score += weights.get("country") * countrySimilarity;score += weights.get("major") * majorSimilarity;score += weights.get("qsRank") * qsRankSimilarity;major.setScore(score);recommendations.add(major);}// 根据加权的得分进行推荐排序recommendations.sort((c1, c2) -> Double.compare(c2.getScore(), c1.getScore()));return recommendations;
}

在需要调用的地方进行调用

/*** 推荐留学专业信息列表** @param sysStudyAbroad 留学专业信息* @return 留学专业信息*/
@Override
public List<SysStudyAbroad> recommend(SysStudyAbroad sysStudyAbroad)
{// 查询数据库专业数据List<SysStudyAbroad> majors = sysStudyAbroadMapper.selectSysStudyAbroadListAll();//设置权重值,国家为0.3,专业为0.5,qs排名为0.2Map<String, Double> weights = new HashMap<>();weights.put("country", 0.3);weights.put("major", 0.5);weights.put("qsRank", 0.2);List<SysStudyAbroad> recommendations = weightedRecommendation(sysStudyAbroad, majors, weights);recommendations = recommendations.subList(0, Math.min(20, recommendations.size()));for (SysStudyAbroad major : recommendations) {System.out.println("国家: " + major.getCountry() + ", 专业: " + major.getMajorId() + ", QS排名: " + major.getQs() + ",权重: " + major.getScore());}return recommendations;
}

用户输入如下

在这里插入图片描述

推荐结果如下

在这里插入图片描述

4.总结

特征加权推荐算法适用于在用户条件的基础上推荐额外的内容,适用于有2个特征以上的数据结构。

如有问题,欢迎评论区批评指正!❤️

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/538152.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件功能测试内容有哪些?湖南长沙软件测评公司分享

软件功能测试主要是验证软件应用程序的功能&#xff0c;且不管功能是否根据需求规范运行。是通过给出适当的输入值&#xff0c;确定输出并使用预期输出验证实际输出来测试每个功能。也可以看作“黑盒测试”&#xff0c;因为功能测试不用考虑程序内部结构和内部特性&#xff0c;…

【词云图绘制实战】——数据准备、清洗、多形式展示

文章目录 1 手动输入文本1.1 加载包1.2 分词处理1.2.1 普通分词方式1.2.2 hmm分词 1.2 词云图绘制1.2.1 wordcloud词云图1.2.2 wordcloud2词云图 2 读取文本数据2.1 读取文本数据2.2 分词处理2.3 词云图绘制2.3.1 wordcloud词云图2.3.2 wordcloud2词云图2.3.3 letterCloud词云图…

uniapp发行H5获取当前页面query

阅读uni的文档大致可得通过 onLoad与 onShow()的形参都能获取页面传递的参数&#xff0c;例如在开发时鼠标移动到方法上可以看到此方法的简短介绍 实际这里说的是打开当前页面的参数&#xff0c;在小程序端的时候测试并无问题&#xff0c;但是发行到H5时首页加载会造成参数获取…

SpringMVC10、拦截器

10、拦截器 10.1、概述 SpringMVC的处理器拦截器类似于Servlet开发中的过滤器Filter,用于对处理器进行预处理和后处理。开发者可以自己定义一些拦截器来实现特定的功能。 过滤器与拦截器的区别&#xff1a;拦截器是AOP思想的具体应用。 过滤器 servlet规范中的一部分&…

快快快!阿里通义灵码限时福利100%中奖,快来领取你的盲盒礼品!

限时福利100%中奖&#xff0c;快来领取你的盲盒礼品&#xff01; 通义灵码的「体验灵码赢取百万 AI 盲盒」的活动正在火热进行中&#xff0c;参与活动后领取 AI 盲盒&#xff0c;还可以邀请更多好友参与&#xff0c;有机会赢取 iPhone15、机械键盘等大奖&#xff01; 点击参与…

案例分析:分库分表后,我的应用崩溃了

今天我们主要分析一个案例&#xff0c;那就是分库分表后&#xff0c;我的应用崩溃了。 前面介绍了一种由于数据库查询语句拼接问题&#xff0c;而引起的一类内存溢出。下面将详细介绍一下这个过程。 假设我们有一个用户表&#xff0c;想要通过用户名来查询某个用户&#xff0…

C goto 语句

C 语言中的 goto 语句允许把控制无条件转移到同一函数内的被标记的语句。 注意&#xff1a;在任何编程语言中&#xff0c;都不建议使用 goto 语句。因为它使得程序的控制流难以跟踪&#xff0c;使程序难以理解和难以修改。任何使用 goto 语句的程序可以改写成不需要使用 goto 语…

Python数据分析毕业设计选题30个及框架大全

当涉及到Python数据分析毕业设计选题时&#xff0c;以下是30个选题建议&#xff1a; 1. 分析社交媒体数据&#xff0c;预测用户行为模式。 2. 使用机器学习算法分析电影评分数据&#xff0c;预测电影票房。 3. 分析股票数据&#xff0c;预测股票的涨跌趋势。 4. 分析用户购…

Kubernetes弃用Dockershim,转向Containerd:影响及如何应对

Kubernetes1.24版本发布时&#xff0c;正式宣布弃用Dockershim&#xff0c;转向Containerd作为默认的容器运行环境。Kubernetes以CRI(Container Runtime Interface)容器运行时接口制定接入准则&#xff0c;用户可以使用Containerd、CRI-O、CRI- Dockerd及其他容器运行时作为Kub…

打破数据孤岛,TDengine 与 Tapdata 实现兼容性互认证

当前&#xff0c;传统行业正面临着数字化升级的紧迫需求&#xff0c;但海量时序数据的处理以及数据孤岛问题却日益突出。越来越多的传统企业选择引入时序数据库&#xff08;Time Series Database&#xff0c;TSDB&#xff09;升级数据架构&#xff0c;同时&#xff0c;为了克服…

一个注解搞定 SpringBoot 接口防刷,还有谁不会?

boolean login accessLimit.needLogin(); String key request.getRequestURI(); //如果需要登录 if(login){ //获取登录的session进行判断 //… key“”“1”; //这里假设用户是1,项目中是动态获取的userId } //从redis中获取用户访问的次数 AccessKey ak AccessK…

同态滤波算法详解

同态滤波是一种用于增强图像的方法&#xff0c;特别适用于去除图像中的照明不均和阴影。该算法基于照射反射模型&#xff0c;将图像分解为两个分量&#xff1a;照射分量&#xff08;illumination component&#xff09;和反射分量&#xff08;reflection component&#xff09;…