GPU服务器为什么需要DPU?

随着AI模型的复杂度增加以及数据量爆炸性增长,GPU服务器在执行训练和推理任务时,不仅面临计算密集型问题,还必须处理大量的数据移动、网络通信、存储I/O以及安全防护等非计算密集型任务。这些问题往往会成为性能瓶颈,消耗宝贵的CPU资源,进而影响整体系统的效率和扩展性。

图片

主要面临挑战与难题:

  1. 网络性能瓶颈:AI训练通常需要多个GPU节点间的高速、低延迟数据交换。传统架构中,这部分工作往往依赖于CPU处理,导致CPU负载过高,且网络性能受限。

  2. 存储I/O问题:AI训练涉及海量数据读取,若完全依赖CPU处理存储访问请求,会导致延迟增加,无法充分发挥GPU的计算效能。

  3. 资源隔离与安全性:在多租户环境中,如何在不牺牲性能的前提下,实现GPU资源的安全隔离和访问控制是一个挑战。

  4. 总体效率低下:由于CPU需同时处理计算、网络、存储和安全等多种任务,导致其难以专注在计算密集型AI训练上,整体系统效率不高。

为了应对数据中心和GPU服务器在处理AI工作负载时所面临的挑战和难题,DPU(数据处理单元,Data Processing Unit)进入了大家的视野。

图片


DPU内嵌强大的网络处理引擎和硬件加速器,能够直接处理网络数据包,支持高速网络协议如RoCE v2(RDMA over Converged Ethernet),实现零拷贝数据传输。这样一来,网络流量不再经由CPU处理,而是由DPU接管,大幅降低网络延迟,提升数据交换效率,使得GPU可以更快获取所需数据。

DPU还能进行存储I/O的硬件加速和卸载,支持NVMe-oF(NVMe over Fabrics)等协议,实现存储操作的直接硬件执行。通过DPU,存储访问操作得以绕过CPU,显著降低延迟,提升存储I/O性能,从而加快AI训练和推理的速度。

DPU能够提供硬件级别的安全功能,如IPSec/TLS加密加速、防火墙、深度包检测等,实现数据在传输过程中的安全防护。同时,通过DPU的虚拟化能力,可以对GPU资源进行细粒度的隔离与控制,确保不同租户间的安全性。

在AI GPU场景下,DPU通过将非计算密集型任务从CPU中剥离出来,释放CPU资源专注于AI计算任务,从而优化整个系统的资源分配和利用效率。同时,DPU还可以提供智能调度和管理功能,实现硬件资源的动态调整,以适应不同阶段AI训练和推理对资源的需求变化。

图片

从架构演进的角度看,DPU是对现有数据中心基础设施的一种革新。随着AI的发展,为了实现更高性能、更低延迟和更强安全性的需求,DPU应运而生,它填补了CPU和GPU在处理非计算密集型任务上的不足,形成了CPU-DPU-GPU三者协同工作的新型数据中心架构。这样,DPU不仅解决了当前AI GPU场景下的诸多挑战,也为未来更大规模、更复杂场景下的AI计算打下了坚实的基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/538803.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【DL经典回顾】激活函数大汇总(八)(Maxout Softmin附代码和详细公式)

激活函数大汇总(八)(Maxout & Softmin附代码和详细公式) 更多激活函数见激活函数大汇总列表 一、引言 欢迎来到我们深入探索神经网络核心组成部分——激活函数的系列博客。在人工智能的世界里,激活函数扮演着不…

用python证明一生一世很容易,但要爱一个人一生一世就比较难了

个人简介 👨🏻‍💻个人主页:九黎aj 🏃🏻‍♂️幸福源自奋斗,平凡造就不凡 🌟如果文章对你有用,麻烦关注点赞收藏走一波,感谢支持! 🌱欢迎订阅我的…

计算机设计大赛 题目:基于FP-Growth的新闻挖掘算法系统的设计与实现

文章目录 0 前言1 项目背景2 算法架构3 FP-Growth算法原理3.1 FP树3.2 算法过程3.3 算法实现3.3.1 构建FP树 3.4 从FP树中挖掘频繁项集 4 系统设计展示5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于FP-Growth的新闻挖掘算法系统的设计与实现…

Day63:WEB攻防-JS应用算法逆向三重断点调试调用堆栈BP插件发包安全结合

目录 前置知识 JS调试分析 JS分析调试结合Burp JS分析调试知识点: 1、JavaScript-作用域&调用堆栈 2、JavaScript-断点调试&全局搜索 3、JavaScript-Burp算法模块使用 前置知识 JS加密数据走向 浏览器调试 1、作用域:(本地&全…

C++模版进阶

文章目录 C模版进阶1、非类型模版参数2、模版的特化2.1、概念2.2、函数模版特化2.3、类模版特化2.3.1、类模版全特化2.3.1、类模版偏特化 2.4、类模版特化示例 3、模版的分离编译3.1、 什么是分离编译3.2、模版的分离编译 4、模版总结 C模版进阶 1、非类型模版参数 模板参数分…

服务注册与发现:Nacos

为什么需要服务注册与发现 假设 mafeng-user 用户微服务部署了多个实例(组成集群模式),如下图所示: 会出现以下几个问题: mafeng-order订单微服务发出Http远程调用时,该如何得知mafeng-user实例的IP和端口…

“禁止互撕”新规第二天,热搜把#章子怡“怒怼”网友#推上了榜一

3月12日,微博热搜发布公告,对热搜词条处置规则进行了更新。 针对热搜词条长期以来存在的引战互撕、挑唆对立等不良现象,热搜生态秩序亟待改善,微博给出了两大解决方案: 一是更新热搜词条处置规则,当热搜词…

AJAX 05 axios拦截器、数据管理平台

AJAX 学习 AJAX 05 黑马头条-数据管理平台项目准备业务1:验证码登录bootstrap提示框实际业务中的验证码登录token 【注】HTML遗落的知识【注】JS遗漏的知识业务2:个人信息设置 & axios拦截器axios请求拦截器axios响应拦截器 业务3:发布文…

人工智能课题、模型源码

人工智能研究生毕业~深度学习、计算机视觉、时间序列预测(LSTM、GRU、informer系列)、python、人工智能项目代做和指导,各种opencv图像处理、图像分类模型(vgg、resnet、mobilenet、efficientnet等)、人脸检…

回归预测 | Matlab实现GSWOA-KELM混合策略改进的鲸鱼优化算法优化核极限学习机的数据回归预测

回归预测 | Matlab实现GSWOA-KELM混合策略改进的鲸鱼优化算法优化核极限学习机的数据回归预测 目录 回归预测 | Matlab实现GSWOA-KELM混合策略改进的鲸鱼优化算法优化核极限学习机的数据回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 GSWOA-KELM多变量回归预测…

NB-IoT模块

目录 一. NB-IoT模块实物图 二. BC20/NB-IoT模块产品规格 三. 指令顺序 1. AT判断BC20模组是否正常 2. ATE0返回OK,已经返回回显 3. ATCSQ 4. AT_CEREG? 5. ATCGATT? 6. ATCGATT? 四. OneNet 连接 1. AT 查看 NB(当前NB),云平台根据这两个…

Gitlab CICD 下载artifacts文件并用allure打开,或bat文件打开

allure命令行打开aritfacts报告 首先下载allure.zip,并解压 配置环境变量 使用命令行打开allure文件夹 allure open 2024-03-11-14-54-40 2024-03-11-14-54-40 包含index.html Bat文件打开artifacts There are 2 html reports in the download artifacts.zip S…