计算机设计大赛 题目:基于FP-Growth的新闻挖掘算法系统的设计与实现

文章目录

  • 0 前言
  • 1 项目背景
  • 2 算法架构
  • 3 FP-Growth算法原理
    • 3.1 FP树
    • 3.2 算法过程
    • 3.3 算法实现
      • 3.3.1 构建FP树
    • 3.4 从FP树中挖掘频繁项集
  • 4 系统设计展示
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于FP-Growth的新闻挖掘算法系统的设计与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目背景

如今新闻泛滥,令人眼花缭乱,即使同一话题下的新闻也多得数不胜数。人们可以根据自己的职业和爱好关注专业新闻网站的不同热点要闻。因此,通过对人们关注新闻的热点问题进行分析,可以得出民众对某个领域的关切程度和社会需要解决的问题,也有利于了解当前的舆论焦点,有助于政府了解民意,便于国家对舆论进行正确引导,使我们的社会更加安定和谐。本文以财经领域为例,通过爬虫技术抓取网络上的大量财经新闻,通过对新闻内容文本进行预处理及密度聚类分析来发现热点;从发现的热点中,再进行词汇聚类分析,得出热点所涉及的人或事物,以此分析出社会对经济领域关注的问题和需要解决的问题。

在这里插入图片描述

2 算法架构

该项目学长要通过文本挖掘技术进行新闻热点问题分析,把从网上抓取到的财经新闻,通过对新闻内容的聚类,得到新闻热点;再对热点进行分析,通过对某一热点相关词汇的聚类,得到热点问题所涉及的人物、行业或组织等。

在这里插入图片描述
1、利用新闻 API、爬虫算法、多线程并行技术,抓取三大专业财经新闻网站(新浪财经、搜狐财经、新华网财经)的大量财经新闻报道;

2、对新闻进行去重、时间段过滤,然后对新闻内容文本进行 jieba
分词并词性标注,过滤出名词、动词、简称等词性,分词前使用自定义的用户词词典增加分词的准确性,分词后使用停用词词典、消歧词典、保留单字词典过滤掉对话题无关并且影响聚类准确性的词,建立每篇新闻的词库,利用
TF-IDF 特征提取之后对新闻进行 DBSCAN 聚类,并对每个类的大小进行排序;

3、针对聚类后的每一类新闻,为了得到该处热点的话题信息,还需要提取它们的标题,利用 TextRank
算法,对标题的重要程度进行排序,用重要性最高的标题来描述该处热点的话题

4、对所有的新闻内容进行 jieba 分词,并训练出 word2vec 词嵌入模型,然后对聚类后的每一类新闻,提取它们的内容分词后的结果,运用
word2vec 模型得到每个词的词向量,再利用 FP-Growth类算法进行相关新闻挖掘。

3 FP-Growth算法原理

3.1 FP树

FP树是一种存储数据的树结构,如下图所示,每一路分支表示数据集的一个项集,数字表示该元素在某分支中出现的次数

在这里插入图片描述

3.2 算法过程

1 构建FP树

  • 遍历数据集获得每个元素项的出现次数,去掉不满足最小支持度的元素项
  • 构建FP树:读入每个项集并将其添加到一条已存在的路径中,若该路径不存在,则创建一条新路径(每条路径是一个无序集合)

2 从FP树中挖掘频繁项集

  • 从FP树中获得条件模式基
  • 利用条件模式基构建相应元素的条件FP树,迭代直到树包含一个元素项为止

算法过程写得比较简略,具体过程我们在下节的实操中进一步理解。

3.3 算法实现

3.3.1 构建FP树

class treeNode:def __init__(self,nameValue,numOccur,parentNode):self.name=nameValue #节点名self.count=numOccur #节点元素出现次数self.nodeLink=None #存放节点链表中,与该节点相连的下一个元素self.parent=parentNodeself.children={} #用于存放节点的子节点,value为子节点名def inc(self,numOccur):self.count+=numOccurdef disp(self,ind=1):print("   "*ind,self.name,self.count) #输出一行节点名和节点元素数,缩进表示该行节点所处树的深度for child in self.children.values():child.disp(ind+1) #对于子节点,深度+1# 构造FP树# dataSet为字典类型,表示探索频繁项集的数据集,keys为各项集,values为各项集在数据集中出现的次数# minSup为最小支持度,构造FP树的第一步是计算数据集各元素的支持度,选择满足最小支持度的元素进入下一步def createTree(dataSet,minSup=1):headerTable={}#遍历各项集,统计数据集中各元素的出现次数for key in dataSet.keys():for item in key:headerTable[item]=headerTable.get(item,0)+dataSet[key] #遍历各元素,删除不满足最小支持度的元素for key in list(headerTable.keys()):if headerTable[key]<minSup:del headerTable[key]freqItemSet=set(headerTable.keys())#若没有元素满足最小支持度要求,返回None,结束函数if len(freqItemSet)==0:return None,Nonefor key in headerTable.keys():headerTable[key]=[headerTable[key],None] #[元素出现次数,**指向每种项集第一个元素项的指针**]retTree=treeNode("Null Set",1,None) #初始化FP树的顶端节点for tranSet,count in dataSet.items():localD={} #存放每次循环中的频繁元素及其出现次数,便于利用全局出现次数对各项集元素进行项集内排序for item in tranSet:if item in freqItemSet:localD[item]=headerTable[item][0]if len(localD)>0:orderedItems=[v[0] for v in sorted(localD.items(),key=operator.itemgetter(1),reverse=True)] #根据元素全局出现次数对每个项集(tranSet)中的元素进行排序updateTree(orderedItems,retTree,headerTable,count) #使用排序后的项集对树进行填充return retTree,headerTable#树的更新函数#items为按出现次数排序后的项集,是待更新到树中的项集;count为items项集在数据集中的出现次数#inTree为待被更新的树;headTable为头指针表,存放满足最小支持度要求的所有元素def updateTree(items,inTree,headerTable,count):#若项集items当前最频繁的元素在已有树的子节点中,则直接增加树子节点的计数值,增加值为items[0]的出现次数if items[0] in inTree.children: inTree.children[items[0]].inc(count)else:#若项集items当前最频繁的元素不在已有树的子节点中(即,树分支不存在),则通过treeNode类新增一个子节点inTree.children[items[0]]=treeNode(items[0],count,inTree)#若新增节点后表头表中没有此元素,则将该新增节点作为表头元素加入表头表if headerTable[items[0]][1]==None: headerTable[items[0]][1]=inTree.children[items[0]]else:#若新增节点后表头表中有此元素,则更新该元素的链表,即,在该元素链表末尾增加该元素updateHeader(headerTable[items[0]][1],inTree.children[items[0]])#对于项集items元素个数多于1的情况,对剩下的元素迭代updateTreeif len(items)>1:updateTree(items[1::],inTree.children[items[0]],headerTable,count)#元素链表更新函数#nodeToTest为待被更新的元素链表的头部#targetNode为待加入到元素链表的元素节点def updateHeader(nodeToTest,targetNode):#若待被更新的元素链表当前元素的下一个元素不为空,则一直迭代寻找该元素链表的末位元素while nodeToTest.nodeLink!=None: nodeToTest=nodeToTest.nodeLink #类似撸绳子,从首位一个一个逐渐撸到末位#找到该元素链表的末尾元素后,在此元素后追加targetNode为该元素链表的新末尾元素nodeToTest.nodeLink=targetNode

测试

#加载简单数据集
def loadSimpDat():simpDat = [['r', 'z', 'h', 'j', 'p'],['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],['z'],['r', 'x', 'n', 'o', 's'],['y', 'r', 'x', 'z', 'q', 't', 'p'],['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]return simpDat#将列表格式的数据集转化为字典格式
def createInitSet(dataSet):retDict={}for trans in dataSet:retDict[frozenset(trans)]=1return retDictsimpDat=loadSimpDat()
dataSet=createInitSet(simpDat)
myFPtree1,myHeaderTab1=createTree(dataSet,minSup=3)
myFPtree1.disp(),myHeaderTab1

输入数据:

在这里插入图片描述
由此数据集构建的FP树长这样,看看是不是满足上一节介绍的FP树结构

在这里插入图片描述

3.4 从FP树中挖掘频繁项集

具体过程如下:

1 从FP树中获得条件模式基

  • 条件模式基:以所查找元素项为结尾的路径集合,每条路径都是一条前缀路径,路径集合包括前缀路径和路径计数值。
  • 例如,元素"r"的条件模式基为 {x,s}2,{z,x,y}1,{z}1
  • 前缀路径:介于所查找元素和树根节点之间的所有内容
  • 路径计数值:等于该条前缀路径的起始元素项(即所查找的元素)的计数值

2 利用条件模式基构建相应元素的条件FP树

  • 对每个频繁项,都要创建一棵条件FP树。
  • 例如对元素t创建条件FP树:使用获得的t元素的条件模式基作为输入,利用构建FP树相同的逻辑构建元素t的条件FP树

3 迭代步骤(1)(2),直到树包含一个元素项为止

  • 接下来继续构建{t,x}{t,y}{t,z}对应的条件FP树(tx,ty,tz为t条件FP树的频繁项集),直到条件FP树中没有元素为止

  • 至此可以得到与元素t相关的频繁项集,包括2元素项集、3元素项集。。。

    #由叶节点回溯该叶节点所在的整条路径
    #leafNode为叶节点,treeNode格式;prefixPath为该叶节点的前缀路径集合,列表格式,在调用该函数前注意prefixPath的已有内容
    def ascendTree(leafNode,prefixPath):if leafNode.parent!=None:prefixPath.append(leafNode.name)ascendTree(leafNode.parent,prefixPath)#获得指定元素的条件模式基
    #basePat为指定元素;treeNode为指定元素链表的第一个元素节点,如指定"r"元素,则treeNode为r元素链表的第一个r节点
    def findPrefixPath(basePat,treeNode):condPats={} #存放指定元素的条件模式基while treeNode!=None: #当元素链表指向的节点不为空时(即,尚未遍历完指定元素的链表时)prefixPath=[]ascendTree(treeNode,prefixPath) #回溯该元素当前节点的前缀路径if len(prefixPath)>1:condPats[frozenset(prefixPath[1:])]=treeNode.count #构造该元素当前节点的条件模式基treeNode=treeNode.nodeLink #指向该元素链表的下一个元素return condPats#有FP树挖掘频繁项集
    #inTree: 构建好的整个数据集的FP树
    #headerTable: FP树的头指针表
    #minSup: 最小支持度,用于构建条件FP树
    #preFix: 新增频繁项集的缓存表,set([])格式
    #freqItemList: 频繁项集集合,list格式def mineTree(inTree,headerTable,minSup,preFix,freqItemList):#按头指针表中元素出现次数升序排序,即,从头指针表底端开始寻找频繁项集bigL=[v[0] for v in sorted(headerTable.items(),key=lambda p:p[1][0])] for basePat in bigL:#将当前深度的频繁项追加到已有频繁项集中,然后将此频繁项集追加到频繁项集列表中newFreqSet=preFix.copy()newFreqSet.add(basePat)print("freqItemList add newFreqSet",newFreqSet)freqItemList.append(newFreqSet)#获取当前频繁项的条件模式基condPatBases=findPrefixPath(basePat,headerTable[basePat][1])#利用当前频繁项的条件模式基构建条件FP树myCondTree,myHead=createTree(condPatBases,minSup)#迭代,直到当前频繁项的条件FP树为空if myHead!=None:mineTree(myCondTree,myHead,minSup,newFreqSet,freqItemList)
    

接着刚才构建的FP树,测试一下,

freqItems=[]
mineTree(myFPtree1,myHeaderTab1,3,set([]),freqItems)
freqItems

我们从FP树中挖掘到的频繁项集如下,这里设置的最小支持度为3:

在这里插入图片描述
上图表示数据集中,支持度大于3(出现3次以上)的元素项集,即,频繁项集。

4 系统设计展示

为了方便操作及理解,学长使用 Python 的 tkinter 模块设计了一个系统操作界面

在这里插入图片描述

分析可视化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(未完待续。。。。)

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/538799.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Day63:WEB攻防-JS应用算法逆向三重断点调试调用堆栈BP插件发包安全结合

目录 前置知识 JS调试分析 JS分析调试结合Burp JS分析调试知识点&#xff1a; 1、JavaScript-作用域&调用堆栈 2、JavaScript-断点调试&全局搜索 3、JavaScript-Burp算法模块使用 前置知识 JS加密数据走向 浏览器调试 1、作用域&#xff1a;&#xff08;本地&全…

C++模版进阶

文章目录 C模版进阶1、非类型模版参数2、模版的特化2.1、概念2.2、函数模版特化2.3、类模版特化2.3.1、类模版全特化2.3.1、类模版偏特化 2.4、类模版特化示例 3、模版的分离编译3.1、 什么是分离编译3.2、模版的分离编译 4、模版总结 C模版进阶 1、非类型模版参数 模板参数分…

服务注册与发现:Nacos

为什么需要服务注册与发现 假设 mafeng-user 用户微服务部署了多个实例&#xff08;组成集群模式&#xff09;&#xff0c;如下图所示&#xff1a; 会出现以下几个问题&#xff1a; mafeng-order订单微服务发出Http远程调用时&#xff0c;该如何得知mafeng-user实例的IP和端口…

“禁止互撕”新规第二天,热搜把#章子怡“怒怼”网友#推上了榜一

3月12日&#xff0c;微博热搜发布公告&#xff0c;对热搜词条处置规则进行了更新。 针对热搜词条长期以来存在的引战互撕、挑唆对立等不良现象&#xff0c;热搜生态秩序亟待改善&#xff0c;微博给出了两大解决方案&#xff1a; 一是更新热搜词条处置规则&#xff0c;当热搜词…

AJAX 05 axios拦截器、数据管理平台

AJAX 学习 AJAX 05 黑马头条-数据管理平台项目准备业务1&#xff1a;验证码登录bootstrap提示框实际业务中的验证码登录token 【注】HTML遗落的知识【注】JS遗漏的知识业务2&#xff1a;个人信息设置 & axios拦截器axios请求拦截器axios响应拦截器 业务3&#xff1a;发布文…

人工智能课题、模型源码

人工智能研究生毕业&#xff5e;深度学习、计算机视觉、时间序列预测&#xff08;LSTM、GRU、informer系列&#xff09;、python、人工智能项目代做和指导&#xff0c;各种opencv图像处理、图像分类模型&#xff08;vgg、resnet、mobilenet、efficientnet等&#xff09;、人脸检…

回归预测 | Matlab实现GSWOA-KELM混合策略改进的鲸鱼优化算法优化核极限学习机的数据回归预测

回归预测 | Matlab实现GSWOA-KELM混合策略改进的鲸鱼优化算法优化核极限学习机的数据回归预测 目录 回归预测 | Matlab实现GSWOA-KELM混合策略改进的鲸鱼优化算法优化核极限学习机的数据回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 GSWOA-KELM多变量回归预测…

NB-IoT模块

目录 一. NB-IoT模块实物图 二. BC20/NB-IoT模块产品规格 三. 指令顺序 1. AT判断BC20模组是否正常 2. ATE0返回OK&#xff0c;已经返回回显 3. ATCSQ 4. AT_CEREG? 5. ATCGATT? 6. ATCGATT? 四. OneNet 连接 1. AT 查看 NB(当前NB)&#xff0c;云平台根据这两个…

Gitlab CICD 下载artifacts文件并用allure打开,或bat文件打开

allure命令行打开aritfacts报告 首先下载allure.zip&#xff0c;并解压 配置环境变量 使用命令行打开allure文件夹 allure open 2024-03-11-14-54-40 2024-03-11-14-54-40 包含index.html Bat文件打开artifacts There are 2 html reports in the download artifacts.zip S…

HAProxy——高性能负载均衡器

目录 一.常见的Web集群调度器 二.HAProxy基本介绍 1.HAProxy是什么&#xff1f; 2.HAProxy的特性 3.HAProxy常用的8种负载均衡调度算法 3.1 轮询&#xff1a;RR&#xff08;Round Robin&#xff09; 3.2 最小连接数&#xff1a;LC&#xff08;Least Connections&#xff…

卷径计算(膜厚叠加+数值积分器应用博途PLC SCL代码)

VN积分法卷径计算的其它方法,可以参考下面文章链接: 1、VN积分法卷径计算FB https://rxxw-control.blog.csdn.net/article/details/131612206https://rxxw-control.blog.csdn.net/article/details/1316122062、PLC数值积分器 https://rxxw-control.blog.csdn.net/article/…

leetcode代码记录(找到小镇的法官

目录 1. 题目&#xff1a;2. 我的代码&#xff1a;小结&#xff1a; 1. 题目&#xff1a; 小镇里有 n 个人&#xff0c;按从 1 到 n 的顺序编号。传言称&#xff0c;这些人中有一个暗地里是小镇法官。 如果小镇法官真的存在&#xff0c;那么&#xff1a; 小镇法官不会信任任何…