Python实现BOA蝴蝶优化算法优化循环神经网络回归模型(LSTM回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

蝴蝶优化算法(butterfly optimization algorithm, BOA)是Arora 等人于2019年提出的一种元启发式智能算法。该算法受到了蝴蝶觅食和交配行为的启发,蝴蝶接收/感知并分析空气中的气味,以确定食物来源/交配伙伴的潜在方向。

蝴蝶利用它们的嗅觉、视觉、味觉、触觉和听觉来寻找食物和伴侣,这些感觉也有助于它们从一个地方迁徙到另一个地方,逃离捕食者并在合适的地方产卵。在所有感觉中,嗅觉是最重要的,它帮助蝴蝶寻找食物(通常是花蜜)。蝴蝶的嗅觉感受器分散在蝴蝶的身体部位,如触角、腿、触须等。这些感受器实际上是蝴蝶体表的神经细胞,被称为化学感受器。它引导蝴蝶寻找最佳的交配对象,以延续强大的遗传基因。雄性蝴蝶能够通过信息素识别雌性蝴蝶,信息素是雌性蝴蝶发出的气味分泌物,会引起特定的反应。

  通过观察,发现蝴蝶对这些来源的位置有非常准确的判断。此外,它们可以辨识出不同的香味,并感知它们的强度。蝴蝶会产生与其适应度相关的某种强度的香味,即当蝴蝶从一个位置移动到另一个位置时,它的适应度会相应地变化。当蝴蝶感觉到另一只蝴蝶在这个区域散发出更多的香味时,就会去靠近,这个阶段被称为全局搜索。另外一种情况,当蝴蝶不能感知大于它自己的香味时,它会随机移动,这个阶段称为局部搜索。

本项目通过BOA蝴蝶优化算法优化LSTM回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:  

4.探索性数据分析

4.1 y变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

数据样本增加维度后的数据形状:

6.构建BOA蝴蝶优化算法优化LSTM回归模型

主要使用BOA蝴蝶优化算法优化LSTM回归算法,用于目标回归。

6.1 BOA蝴蝶优化算法寻找最优参数值

最优参数:

6.2 最优参数值构建模型 

编号

模型名称

参数

1

LSTM回归模型

units=best_units

2

epochs=best_epochs

6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失曲线图

7.模型评估

7.1评估指标及结果 

评估指标主要包括R方、均方误差、解释性方差、绝对误差等等。

模型名称

指标名称

指标值

测试集

LSTM回归模型

R方

0.9262

均方误差

2058.5686

解释方差分

0.9262

绝对误差

32.9346

从上表可以看出,R方分值为0.9262,说明模型效果比较好。

关键代码如下:  

 

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型效果良好。

8.结论与展望

综上所述,本文采用了BOA蝴蝶优化算法寻找LSTM算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。


# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 获取方式一:# 项目实战合集导航:https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2# 获取方式二:链接:https://pan.baidu.com/s/1Ex3ys6JTbT4zoyyKbnXLkw 
提取码:r10d

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/539120.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

钡铼技术R40路由器隧道通风控制及环境监测系统集成方案

一、背景介绍 随着城市化进程的加快,地下交通建设越来越重要。地下隧道作为城市交通的重要组成部分,其安全运行和环境质量直接关系到人们的出行体验和生活质量。为了保障隧道内空气的流通和质量,钡铼技术R40路由器通风控制及环境监测系统应运…

phpcms上传导致getshell详解及案例

一、环境 这里我根据大佬的文章将环境复原 phpcms上传导致getshell详解及案例 | 离别歌 回忆phpcms头像上传漏洞以及后续影响 | 离别歌 二、代码&#xff1a; php&#xff1a; <?php header("Content-Type:text/html; charsetutf-8"); require_once(pclzip…

ChatGPT 插件Plugin集合

ChatGPT的插件功能推出一段时间了&#xff0c;陆陆续续的上架了得有200了。 但是其中大部分都不是很好用&#xff0c;并且找起来也复杂。 推荐一个不知名热心人做的导航页。 ChatGPT Plugins Overview 基本上集合了所有的插件&#xff0c;并且还在实时更新中。 需要升级4.0&a…

React低代码平台实战:构建高效、灵活的应用新范式

文章目录 每日一句正能量前言一、React与低代码平台的结合优势二、基于React的低代码平台开发挑战三、基于React的低代码平台开发实践后记好书推荐编辑推荐内容简介作者简介目录前言为什么要写这本书 读者对象如何阅读本书 赠书活动 每日一句正能量 人生之美&#xff0c;不在争…

疫情网课管理系统|基于springboot框架+ Mysql+Java+Tomcat的疫情网课管理系统设计与实现(可运行源码+数据库+设计文档+部署说明)

推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 目录 前台功能效果图 ​编辑 学生功能模块 管理员功能 教师功能模块 系统功能设计 数据库E-R图设计 lun…

探索非监督学习:解决聚类问题

目录 1 非监督学习的概念1.1 非监督学习的定义1.2 非监督学习的重要性 2 聚类问题的定义和意义2.1 聚类问题的定义2.2 聚类问题的意义2.3 聚类问题在非监督学习中的地位 3 聚类算法介绍3.1 K均值聚类3.2 层次聚类3.3 密度聚类 4 聚类问题的评估4.1 内部评估指标4.2 外部评估指标…

后端程序员入门react笔记(八)-redux的使用和项目搭建

一个更好用的文档 添加链接描述 箭头函数的简化 //简化前 function countIncreAction(data) {return {type:"INCREMENT",data} } //简化后 const countIncreAction data>({type:"INCREMENT",data })react UI组件库相关资料 组件库连接和推荐 antd组…

数字排列 - 华为OD统一考试(C卷)

OD统一考试&#xff08;C卷&#xff09; 分值&#xff1a; 200分 题解&#xff1a; Java / Python / C 题目描述 小明负责公司年会&#xff0c;想出一个趣味游戏: 屏幕给出 1−9 中任意 4 个不重复的数字,大家以最快时间给出这几个数字可拼成的数字从小到大排列位于第 n 位置…

使用 Jenkins 管道在 Docker Hub 中构建 Docker 镜像

Jenkins Pipeline 是一个强大的工具&#xff0c;可以自动执行部署。在各个阶段之间拆分的灵活和自定义操作是尝试此功能的一个很好的理由。 构建您自己的 Docker 镜像并将其上传到 Docker Hub 以保持存储库更新是了解 Jenkins Pipeline 如何改进您的工作方式的一个很好的示例。…

Exam in MAC [容斥]

题意 思路 正难则反 反过来需要考虑的是&#xff1a; (1) 所有满条件一的(x,y)有多少对&#xff1a; x 0 时&#xff0c;有c1对 x 1 时&#xff0c;有c对 ...... x c 时&#xff0c;有1对 以此类推 一共有 (c2)(c1)/2 对 (2) 符合 x y ∈ S的有多少对&#xff1a…

【django framework】ModelSerializer+GenericAPIView,如何获取HTTP请求头中的信息(远程IP、UA等)

【django framework】ModelSerializerGenericAPIView&#xff0c;如何获取HTTP请求头中的信息(远程IP、UA等) 某些时候&#xff0c;我们不得不获取调用当前接口的客户端IP、UA等信息&#xff0c;如果是第一次用Django Restframework&#xff0c;可能会有点懵逼&#xff0c;那么…

node.js入门—day02

个人名片&#xff1a; &#x1f60a;作者简介&#xff1a;一名大二在校生 &#x1f921; 个人主页&#xff1a;坠入暮云间x &#x1f43c;座右铭&#xff1a;给自己一个梦想&#xff0c;给世界一个惊喜。 &#x1f385;**学习目标: 坚持每一次的学习打卡 文章目录 什么是单线程…