论文笔记:SUPERVISED CONTRASTIVE REGRESSION

2022arxiv的论文,没有中,但一作是P大图班本MIT博,可信度应该还是可以的

0 摘要

  • 深度回归模型通常以端到端的方式进行学习,不明确尝试学习具有回归意识的表示
    • 它们的表示往往是分散的,未能捕捉回归任务的连续性质。
  • 在本文中,我们提出了“监督对比回归”(Supervised Contrastive Regression,SupCR)的框架
    • 该框架通过将样本与目标距离进行对比来学习具有回归意识的表示
    • SupCR与现有的回归模型是正交的,并且可以与这些模型结合使用以提高性能
  • 在涵盖计算机视觉、人机交互和医疗保健领域的五个真实世界回归数据集上进行的大量实验表明,使用SupCR可以达到最先进的性能,并且始终在所有数据集、任务和输入模式上改进先前的回归基线。
    • SupCR还提高了对数据损坏的鲁棒性
    • 对减少的训练数据具有弹性
    • 改善了迁移学习的性能
    • 并且对未见过的目标有很好的泛化能力。

1 介绍

1.1 动机

  • 之前的回归问题
    • 都集中在以端到端的方式对最终预测进行约束
    • 并未明确考虑模型学到的表示
  • ——>学习的表示往往是分散的,未能捕捉回归任务中连续的关系
  • 图1(a)展示了在从网络摄像头户外图像预测天气温度的任务中,由L1损失学习的表示
    • L1模型学习的表示并没有呈现连续的真实温度值;相反,它按不同的摄像头以一种碎片化的方式进行分组。
      • 这种无序和碎片化的表示对于回归任务是次优的,甚至可能会妨碍性能,因为其中包含了干扰信息
  • 之前的表示学习都集中在分类问题上
    • 尤其是监督学习和对比学习
    • 如图1(b)所示,这些方法在上述视觉温度预测任务中学习的表示对于回归问题来说是次优的
      • 因为它忽略了回归任务中样本之间的连续顺序。

1.2 本文思路

  • 引入了“监督对比回归”(Supervised Contrastive Regression,SupCR)这一新的深度回归学习框架
    • 首先学习一个表示,确保嵌入空间中的距离与目标值的顺序相对应
      • 为了学习这样一个具有回归意识的表示,我们根据样本的标签/目标值距离将样本进行对比
    • 然后使用这个表示来预测目标值
  • 方法明确地利用样本之间的有序关系来优化下游回归任务的表示(如1(c)所示)
  • 此外,SupCR与现有的回归方法正交
    • 可以使用任何类型的回归方法将学习到的表示映射到预测值上。

2 方法

2.0 方法定义

  • 学习一个神经网络,由两部分组成

     

    • 特征encoder
    • 预测器p(\cdot):R^{d_e}\rightarrow R^{d_t} 从x \in X中预测y \in R^{d_t}
  •  对于给定的输入 batch,类似于对比学习,首先对数据进行两次数据增强,得到batch的两个view
    • 这两个view被输入到编码器f(·)中,为每个增强的输入数据获取一个de维特征嵌入
    • 监督对比回归损失L_{SupCR}是在这些特征嵌入上计算的
      • 为了将学习到的表示用于回归,冻结编码器f(·),然后在其之上训练预测器,使用回归损失(例如,L1损失)

2.1 监督对比回归损失

  • 大前提:希望损失函数能够确保嵌入空间中的距离与标签空间中的距离相对应
  • 给定N个数据组成的batch ,其中有input和label \{(x_n,y_n)\}_{n \in [N]}
    • 对该批数据应用数据增强,得到两个视图的batch
      • \tilde{x}_{2n}=t(x_n),\tilde{x}_{2n-1}=t'(x_n)
      • t和t'是两种数据增强方式
      • ——>得到两个视图下的batch\{(\tilde{x}_l,\tilde{y}_l)\}_{l \in [2N]}
        • \tilde{y}_{2n}=\tilde{y}_{2n-1}=y_n
    • 数据增强后的batch会被喂到encoder中,以获得相应的embedding
      • v_l=f(\tilde{x}_l)\in R^{d_e}, \forall n \in [2N]
  • 监督对比回归损失为

比如我们计算20这个样本的对比学习损失函数时,将30作为anchor的时候,会有两个负样本;将0作为anchor的时候,会有一个负样本

 2.2 理论证明

3 实验

3.1 五个实验

AgeDB
  • 从人脸图像预测年龄。
  • 包含了16,488张名人的图像和相应的年龄标签。
  • 年龄范围在0到101岁之间。
  • 数据集被分为12,208张训练图像、2140张验证图像和2140张测试图像。
TUAB
  • 从EEG静息态信号估计脑龄。
  • 包括1,385个21通道的EEG信号,采样频率为200Hz,来自年龄范围从0到95岁的个体。
  • 数据集被分为1,246个受试者的训练集和139个受试者的测试集。
MPIIFaceGaze
  • 从人脸图像估计注视方向。
  • 包含了213,659张从15名参与者收集的人脸图像
  • 将其划分为一个33,000张训练图像、6,000张验证图像和6,000张测试图像的数据集,参与者之间没有重叠。
  • 注视方向被描述为一个二维向量,第一维是俯仰角,第二维是偏航角。俯仰角的范围是-40°到10°,偏航角的范围是-45°到45°。
SkyFinder
  • 从户外网络摄像头图像预测温度。
  • 包含了由44台摄像头在每天上午11点左右拍摄的35,417张图像,天气和照明条件涵盖了广泛的范围。
  • 温度范围是-20°C到-49°C。
  • 数据集被分为28,373张训练图像、3,522张验证图像和3,522张测试图像。
IMDB-WIKI
  • 从人脸图像预测年龄
  • 包含了523,051张名人图像和相应的年龄标签。
  • 年龄范围在0到186岁之间(有些图像标签错误)。
  • 使用该数据集来测试方法对减少训练数据的弹性,迁移学习的性能以及对未见目标的泛化能力。

3.2 实验效果

 

 3.3 数据损坏的鲁棒性

使用ImageNet-C基准测试中的损坏生成过程来对AgeDB测试集进行19种不同强度级别的多样化损坏。

 3.4 训练数据的影响

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/53916.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

恺英网络宣布:与华为鸿蒙系统展开合作,将开发多款手游

8月5日消息,恺英网络宣布旗下子公司盛和网络参加了华为开发者大会(HDC.Together)游戏服务论坛,并在华为鸿蒙生态游戏先锋合作启动仪式上进行了亮相。恺英网络表示,将逐步在HarmonyOS上开发多款游戏,利用Har…

【Docker】Docker容器数据卷、容器卷之间的继承和DockerFIle的详细讲解

🚀欢迎来到本文🚀 🍉个人简介:陈童学哦,目前学习C/C、算法、Python、Java等方向,一个正在慢慢前行的普通人。 🏀系列专栏:陈童学的日记 💡其他专栏:CSTL&…

k8s kubeadm命令升级集群 从1.17升级到1.18

k8s kubeadm命令升级集群 从1.17升级到1.18 大纲 注意事项master节点执行升级命令master节点和node节点执行命令 注意事项 目标当前线上k8s集群版本是k8s1.17 想把k8s升级到1.18。注意k8s不能跨版本升级例如k8s1.17不能直接升级到k8s1.19,需要先升级到1.18才后向…

企业内网终端安全无客户端准入控制技术实践

终端无代理/无客户端准入控制技术因其良好的用户体验而倍受创新企业的青睐。无代理/无客户端准入控制技术,顾名思义,是一种在网络中对终端实施访问控制的方法,无需依赖特定的客户端软件。 不同于银行、医院等传统行业的终端准入控制需求&…

【Rust】Rust学习

文档:Rust 程序设计语言 - Rust 程序设计语言 简体中文版 (bootcss.com) 墙裂推荐这个文档 第一章入门 入门指南 - Rust 程序设计语言 简体中文版 第二章猜猜看游戏 猜猜看游戏教程 - Rust 程序设计语言 简体中文版 (bootcss.com) // 导入库 use std::io; use s…

《向量数据库指南》——GPTCache 中的温度参数

目录 GPTCache 中的温度参数 a. 从多个候选答案中随机选择 b. 调整概率跳过缓存,直接调用模型 GPTCache 中的温度参数 为了平衡响应的随机性和一致性,并满足用户偏好或应用需求,在多模态 AI 应用中选择适当的温度参数值至关重要。GPTCache 保留了机器学习中温度参数的概…

【ASP.NET MVC】使用动软(三)(11)

一、问题 上文中提到,动软提供了数据库的基本操作功能,但是往往需要添加新的功能来解决实际问题,比如GetModel,通过id去查对象: 这个功能就需要进行改进:往往程序中获取的是实体的其他属性,比如…

postgresql|数据库|MySQL数据库向postgresql数据库迁移的工具pgloader的部署和初步使用

前言: MySQL数据库和postgresql数据库之间的差异并不多,这里的差异指的是对SQL语言的支持两者并不大,但底层的东西差异是非常多的,例如,MySQL的innodb引擎概念,数据库用户管理,这些和postgresq…

驱动开发(中断)

头文件: #ifndef __LED_H__ #define __LED_H__#define PHY_LED1_MODER 0X50006000 #define PHY_LED1_ODR 0X50006014 #define PHY_LED1_RCC 0X50000A28#define PHY_LED2_MODER 0X50007000 #define PHY_LED2_ODR 0X50007014 #define PHY_LED2_RCC 0X50000A28#def…

orangepi 4lts ubuntu安装RabbitMQ

4lts的emmc 系统安装选文件系统格式 ext4 需先安装erlang: sudo apt install erlang 安装RabbitMQ: sudo apt install rabbitmq-server - 添加用户以便远程访问: - 账号密码都是admin: sudo rabbitmqctl add_user admin admin -sudo rabbitmqct…

创建vue-cli(脚手架搭建)

目录 功能 需要的环境 使用HbuilderX快速搭建一个vue-cli项目 组件路由 element-ui vue-cli 官方提供的一个脚手架,用于快速生成一个 vue 的项目模板;预先定义 好的目录结构及基础代码,就好比咱们在创建 Maven 项目时可以选择创建一个 骨…

【每日一题】21. 合并两个有序链表

【每日一题】21. 合并两个有序链表 21. 合并两个有序链表题目描述解题思路 21. 合并两个有序链表 题目描述 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1: 输入:l1 [1,2,4], l2 [1,3,4…