【算法】一类支持向量机OC-SVM(1)

【算法】一类支持向量机OC-SVM

  • 前言
  • 一类支持向量机OC-SVM 概念介绍
  • 示例编写
    • 数据集创建
    • 实现一类支持向量机OC-SVM
    • 完整的示例输出


前言

由于之前毕设期间主要的工具就是支持向量机,从基础的回归和分类到后来的优化,在接触到支持向量机还有一类支持向量机的,对其产生了一定的兴趣,并对研究过程中的相关示例进行记录,主要是基础的一类支持向量机OC-SVM示例蜂群算法优化一类支持向量机超参数示例,方便后续的查看。

一类支持向量机OC-SVM 概念介绍

OC-SVM(One-Class Support Vector Machine)是一种支持向量机(Support Vector Machine,SVM)的变体,用于异常检测和异常检测问题。与传统的SVM只能处理二分类问题不同,OC-SVM旨在通过仅使用正例样本来学习一个描述正例样本特征的超平面,并尽可能将负例样本远离该超平面。

在OC-SVM中,训练样本仅包含正例样本,目标是找到一个最优的超平面,使得正例样本尽可能地位于该超平面上方,并使负例样本尽可能地位于该超平面下方。这样,当新的样本点被映射到特征空间时,可以根据其相对于超平面的位置进行分类,从而判断其是否为异常样本。

该介绍不那么通俗易懂,看了一篇文章,简单的说,以前的svm 分类有明细的划分,现在的oc-svm则只有一个类别的划分,也就是正例,至于其他的都归属于负例。这个在大神的知乎文章什么是一类支持向量机(one class SVM),是指分两类的支持向量机吗?中有通俗的例子讲解,这边不进行重复论述。

示例编写

主要是基于vscode 编译器展开python的编写,只需要在扩展中下载Python 插件即可。
在这里插入图片描述

数据集创建

数据集包括测试与训练集,由于一类支持向量机OC-SVM在示例中只要采用python 中的OneClassSVM,而它返回的预测标签如果 正常数据点返回 1,异常点返回 -1 ,因此在数据集的标签要做相应的处理,正例为1,负例为-1。

# 假设 X 是训练数据,它应该是一个形状为 (n_samples, n_features) 的二维数组
# 这里我们创建一个简单的示例数据集
X = np.random.normal(size=(100, 2))
binary_array = np.random.randint(2, size=100)
binary_array=np.where(binary_array == 0, -1, 1)
# 预测
# 使用训练好的模型预测新数据点的标签,正常数据点返回 1,异常点返回 -1
X_test = np.random.normal(size=(10, 2))

实现一类支持向量机OC-SVM

主要采用OneClassSVM,也是sklearn库里面的,pip 一下就行。使用起来跟svm 基本一样。

# 创建一个 OneClassSVM 对象
# 通过 'nu' 参数来控制错误率的上界和支持向量的比例
# 'kernel' 参数可以选择核函数,例如 'rbf' 代表径向基函数核
# 'gamma' 是 'rbf', 'poly' 和 'sigmoid' 核函数的系数
ocsvm = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)
  • ‘nu’ 参数来控制错误率的上界和支持向量的比例
  • ‘kernel’ 参数可以选择核函数,例如 ‘rbf’ 代表径向基函数核
  • ‘gamma’ 是 ‘rbf’, ‘poly’ 和 ‘sigmoid’ 核函数的系数
  • ‘shrinking’ 参数如果设为 True,则会使用启发式收缩
  • ‘tol’ 是停止训练的误差值大小
  • ‘cache_size’ 是指定训练时使用的缓存大小
  • ‘verbose’ 是控制日志输出的数量

这个可以直接看源码的注释,里面都有介绍。

完整的示例输出

# demo
from sklearn import svm
import numpy as np# 假设 X 是训练数据,它应该是一个形状为 (n_samples, n_features) 的二维数组
# 这里我们创建一个简单的示例数据集
X = np.random.normal(size=(100, 2))
binary_array = np.random.randint(2, size=100)
binary_array=np.where(binary_array == 0, -1, 1)
print(binary_array)# 创建一个 OneClassSVM 对象
# 通过 'nu' 参数来控制错误率的上界和支持向量的比例
# 'kernel' 参数可以选择核函数,例如 'rbf' 代表径向基函数核
# 'gamma' 是 'rbf', 'poly' 和 'sigmoid' 核函数的系数
ocsvm = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)# 训练模型
ocsvm.fit(X,binary_array)# 预测
# 使用训练好的模型预测新数据点的标签,正常数据点返回 1,异常点返回 -1
X_test = np.random.normal(size=(10, 2))
# print(X_test)
print("--------------")
predictions = ocsvm.predict(X_test)# 输出预测结果
print(predictions)
print("--------------")
# 也可以使用 decision_function 方法来获取每个样本到决策边界的距离
# 负数通常表示异常值
distances = ocsvm.decision_function(X_test)
print(distances)

在这里插入图片描述
从输出的结果来看,有2组示例预测为负例,然后可以通过与真实标签比较,调整超参数来提交预测的精度。也可以嵌入寻优方法,这个在往期博文都有介绍,比如ga、pso等等。

在资源中上传了用蜂群算法优化一类支持向量机超参数的2个示例,有需要可以直接下载使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/540343.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

幸福金龄会携手广东文艺团队共谱文化新篇章《锦绣中华》第二届中老年文旅展演盛大开幕

近日,幸福金龄会携手广东省各支文艺团队及艺术家,开启了《锦绣中华》第二届中老年文旅游活动。此次活动得到了各大媒体对于老年旅游服务的深度关注,并获得了各地文旅企业的热情配合,共同为中老年朋友们打造了一场文化盛宴。 近期&…

01、JS实现:去除数组中重复项的算法之一

数组去除重复项的算法: Ⅰ、删除排序数组中的重复项(注意:是已经排好序的):1、题目描述:2、解题思路:3、实现代码: Ⅳ、小结: Ⅰ、删除排序数组中的重复项(注意:是已经排好序的)&…

OJ_八皇后

题干 C实现 深度优先遍历&#xff0c;注意回溯打表法&#xff1a;先求出所有解&#xff0c;再存入一个容器中 #define _CRT_SECURE_NO_WARNINGS#include <iostream> #include <vector>using namespace std;vector<vector<int>> queenVec;//用来存在所…

基于SpringBoot+Vue的电商应用系统的设计与实现

1 绪论 1.1研究背景 当前社会各行业领域竞争压力非常大&#xff0c;随着当前时代的信息化&#xff0c;科学化发展&#xff0c;让社会各行业领域都争相使用新的信息技术&#xff0c;对行业内的各种相关数据进行科学化&#xff0c;规范化管理。这样的大环境让那些止步不前&…

梵宁教育是诈骗机构吗?是否存在坑人行为

近日&#xff0c;注意到网络上出现了一些关于梵宁教育涉嫌诈骗及虚假宣传的言论&#xff0c;这些言论严重损害了梵宁教育的声誉和形象。在此&#xff0c;我们郑重声明&#xff1a;梵宁教育始终坚守诚信原则&#xff0c;从未进行过任何诈骗或虚假宣传行为。 梵宁教育自成立以来&…

损失函数和反向传播

1. 损失函数的基础 import torch from torch.nn import L1Loss from torch import nninputs torch.tensor([1, 2, 3], dtypetorch.float32) targets torch.tensor([1, 2, 5], dtypetorch.float32)inputs torch.reshape(inputs, (1, 1, 1, 3)) targets torch.reshape(targe…

基于SSM+Vue的龙腾公司员工信息管理系统设计与实现

​ 1 绪论 1.1研究背景 当前社会各行业领域竞争压力非常大&#xff0c;随着当前时代的信息化&#xff0c;科学化发展&#xff0c;让社会各行业领域都争相使用新的信息技术&#xff0c;对行业内的各种相关数据进行科学化&#xff0c;规范化管理。这样的大环境让那些止步不前&a…

分享几套ArcGIS和CAD的三调符号库和使用

在粉丝群中呢&#xff0c;一直有朋友需要三调的符号库。今天就分享几套供大家学习使用&#xff01; 这次符号库有ArcGIS和CAD的&#xff0c;使用方法可参考我们的课程学习。 分享的三调符号库&#xff0c;也是粉丝群中收集的&#xff0c;分享给大家。符号库的质量还请大家自我斟…

Python·算法·每日一题(3月15日)合并两个有序链表

题目 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 示例 1&#xff1a; 输入&#xff1a;l1 [1,2,4], l2 [1,3,4] 输出&#xff1a;[1,1,2,3,4,4]示例 2&#xff1a; 输入&#xff1a;l1 [], l2 [] 输出&am…

FreeRTOS操作系统学习——软件定时器

软件定时器介绍 软件定时器允许设置一段时间&#xff0c;当设置的时间到达之后就执行指定的功能函数&#xff0c;被定时器调用的这个功能函数叫做定时器的回调函数。回调函数的两次执行间隔叫做定时器的定时周期&#xff0c;简而言之&#xff0c;当定时器的定时周期到了以后就…

Linux 多进程开发(下)

第二章 Linux 多进程开发 2.6 进程间通信2.6.1 匿名管道2.6.2 有名管道2.6.3 内存映射2.6.4 信号2.6.5 共享内存 2.7 守护进程 网络编程系列文章&#xff1a; 第1章 Linux系统编程入门&#xff08;上&#xff09; 第1章 Linux系统编程入门&#xff08;下&#xff09; 第2章 L…

【C++map和set容器:AVL树、红黑树详解并封装实现map和set】

[本节目标] map和set底层结构 AVL树 红黑树 红黑树模拟实现STL中的map和set 1.底层结构 前面对map/multimap/set/multiset进行了简单的介绍&#xff0c;在其文档介绍中发现&#xff0c;这几个容器有个 共同点是&#xff1a;其底层都是按照二叉搜索树来实现的&#xff0c;但…