本题中,我们可以删除原始字符串的一些字符但是不能改变其他字符的位置,这种求子序列的题都可以用动态规划来解决。
首先我们要确定dp数组的定义,这里我们将dp数组定义为dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
然后我们确定递推公式,这里,
if (s[i - 1] == t[j - 1])
t中找到了一个字符在s中也出现了
if (s[i - 1] != t[j - 1])
相当于t要删除元素,继续匹配
if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,在回看一下dp[i][j]的定义)
if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];
初始化,无论那个字符串为空,其匹配长度肯定都是0;
class Solution {public boolean isSubsequence(String s, String t) {int length1 = s.length(); int length2 = t.length();int[][] dp = new int[length1+1][length2+1];for(int i = 1; i <= length1; i++){for(int j = 1; j <= length2; j++){if(s.charAt(i-1) == t.charAt(j-1)){dp[i][j] = dp[i-1][j-1] + 1;}else{dp[i][j] = dp[i][j-1];}}}if(dp[length1][length2] == length1){return true;}else{return false;}}
}