【智能算法】人工水母搜索算法(JS)原理及实现

在这里插入图片描述

目录

    • 1.背景
    • 2.算法原理
      • 2.1算法思想
      • 2.2算法过程
    • 3.代码实现
    • 4.参考文献


1.背景

2020年,Chou 等人受到水母运动行为启发,提出了人工水母搜索算法(Artificial Jellyfish Search Optimizer, JS)。

2.算法原理

2.1算法思想

JS模拟了水母的搜索行为,包括追随海流、水母群内的主动和被动运动、时间控制机制以及群聚过程。
在这里插入图片描述

2.2算法过程

洋流
海洋中蕴含着大量的营养物质,这些物质会吸引水母。洋流的方向是通过对每个水母到处于最佳位置的水母(适应度度量)所有向量进行平均。
t r e n d → = 1 n P o p ∑ t r e n d → i = 1 n P o p ∑ ( X ∗ − e c X i ) = X ∗ − e c ∑ X i n P o p = X ∗ − e c μ \overrightarrow{\mathrm{trend}}=\frac{1}{\mathrm{n}_{\mathrm{Pop}}}\sum\overrightarrow{\mathrm{trend}}_{\mathrm{i}}=\frac{1}{\mathrm{n}_{\mathrm{Pop}}}\sum\left(X^{*}-\mathrm{e}_{\mathrm{c}}X_{\mathrm{i}}\right)=X^{*}-\mathrm{e}_{\mathrm{c}}\frac{\sum X_{\mathrm{i}}}{\mathrm{n}_{\mathrm{Pop}}}=X^{*}-\mathrm{e}_{\mathrm{c}}\mu trend =nPop1trend i=nPop1(XecXi)=XecnPopXi=Xecμ
这里,令 d f = e c μ \mathbf{df}=\mathbf{e}_{\mathbf{c}}\mu df=ecμ,则洋流方向可以描述为:
t r e n d → = X ∗ − d f \overrightarrow{\mathrm{trend}}=\mathrm{X}^{*}-\mathrm{df} trend =Xdf
假设水母在所有维度上分布服从正态空间分布:
在这里插入图片描述
因此,可以进行简化:
d f = β × r a n d ( 0 , 1 ) × μ \mathrm{df}=\beta\times\mathrm{rand}(0,1)\times\mu df=β×rand(0,1)×μ
每只水母位置更新:
X i ( t + 1 ) = X i ( t ) + r a n d ( 0 , 1 ) × ( X ∗ − β × r a n d ( 0 , 1 ) × μ \mathrm{X_i(t+1)=X_i(t)+rand(0,1)\times(X^*-\beta\times rand(0,1)\times\mu} Xi(t+1)=Xi(t)+rand(0,1)×(Xβ×rand(0,1)×μ
水母群体运动
在群集中,水母分别表现出被动(类型A)和主动(类型B)的运动 。最初,当群集刚形成时,大多数水母表现出类型A的运动。随着时间的推移,它们逐渐表现出类型B的运动。类型A运动是水母围绕自身位置的运动(全局探索),每个水母的相应更新位置由:
X i ( t + 1 ) = X i ( t ) + γ × r a n d ( 0 , 1 ) × ( U b − L b ) \mathrm{X_i(t+1)=X_i(t)+\gamma\times rand(0,1)\times(U_b-L_b)} Xi(t+1)=Xi(t)+γ×rand(0,1)×(UbLb)
B类型运动可以看作种群间根据食物数量(适应度衡量)进行互相迁移,比如当水母 i i i处食物数量大于水母 j j j处,则水母 j j j向水母 i i i移动,反之亦然。(此阶段为局部探索)
S t e p = X i ( t + 1 ) − X i ( t ) Direction → = X j ( t ) − X i ( t ) i f f ( X i ) ≥ f ( X j ) X i ( t ) − X j ( t ) i f f ( X i ) < f ( X j ) \mathrm{Step}=\mathrm{X_i(t+1)-X_i(t)} \\ \overrightarrow{\text{Direction}}=\begin{matrix}\mathsf{X_j(t)-X_i(t)~if~f(X_i)\geq f(X_j)}\\\mathsf{X_i(t)-X_j(t)~if~f(X_i)<f(X_j)}\end{matrix} Step=Xi(t+1)Xi(t)Direction =Xj(t)Xi(t) if f(Xi)f(Xj)Xi(t)Xj(t) if f(Xi)<f(Xj)
其中, S t e p → = r a n d ( 0 , 1 ) × D i r e c t i o n → \overrightarrow{\mathrm{Step}}=\mathrm{rand}(0,1)\times\overrightarrow{\mathrm{Direction}} Step =rand(0,1)×Direction ,因此整体可表述为:
X i ( t + 1 ) = X i ( t ) + S t e p → \mathrm{X_i(t+1)=X_i(t)+\overrightarrow{Step}} Xi(t+1)=Xi(t)+Step
时间控制机制
海洋流富含营养食物,吸引了水母的聚集形成水母群。随着温度或风向变化,水母群会转移至新的海洋流形成新的群体。水母群内的水母表现出被动和主动两种运动,其偏好会随着时间变化。引入时间控制机制来调节水母在海洋流和群内移动之间的转换。(这里是对全局与局部平衡,收敛性考虑)
在这里插入图片描述

c ( t ) = ∣ ( 1 − t M a x i t e r ) × ( 2 × r a n d ( 0 , 1 ) − 1 ) ∣ \mathbf{c(t)}=\left|\left(1-\frac{\mathbf{t}}{\mathbf{Max}_{\mathrm{iter}}}\right)\times(2\times\mathrm{rand}(0,1)-1)\right| c(t)= (1Maxitert)×(2×rand(0,1)1)
伪代码
在这里插入图片描述

3.代码实现

% 水母搜索算法
function [Best_pos, Best_fitness, Iter_curve, History_pos, History_best] = JS(pop, maxIter,lb,ub,dim,fobj)
%input
%pop 种群数量
%dim 问题维数
%ub 变量上边界
%lb 变量下边界
%fobj 适应度函数
%maxIter 最大迭代次数
%output
%Best_pos 最优位置
%Best_fitness 最优适应度值
%Iter_curve 每代最优适应度值
%History_pos 每代种群位置
%History_best 每代最优个体位置
%% 初始化种群
X = initialization(pop,dim,ub,lb);
VarSize = [1 dim];
%% 计算适应度
popCost = zeros(1,pop);
for i=1:poppopCost(i) = fobj(X(i,:));
end
%% 迭代
for it=1:maxIterMeanvl=mean(X,1);[value,index]=sort(popCost);Best_pos=X(index(1),:);BestCost=popCost(index(1));for i=1:pop% Calculate time control c(t) using Eq. (17);Ar=(1-it*((1)/maxIter))*(2*rand-1);if abs(Ar)>=0.5%% Folowing to ocean current using Eq. (11)newsol = X(i,:)+ rand(VarSize).*(Best_pos - 3*rand*Meanvl);% Check the boundary using Eq. (19)newsol = simplebounds(newsol,lb,ub);% EvaluationnewsolCost = fobj(newsol);% Comparisonif newsolCost<popCost(i)X(i,:) = newsol;popCost(i)=newsolCost;if popCost(i) < BestCostBestCost=popCost(i);Best_pos = X(i,:);endendelse%% Moving inside swarmif rand<=(1-Ar)% Determine direction of jellyfish by Eq. (15)j=i;while j==ij=randperm(pop,1);endStep = X(i,:) - X(j,:);if popCost(j) < popCost(i)Step = -Step;end% Active motions (Type B) using Eq. (16)newsol = X(i,:) + rand(VarSize).*Step;else% Passive motions (Type A) using Eq. (12)newsol = X(i,:) + 0.1*(ub-lb)*rand;end% Check the boundary using Eq. (19)newsol = simplebounds(newsol, lb,ub);% EvaluationnewsolCost = fobj(newsol);% Comparisonif newsolCost<popCost(i)X(i,:) = newsol;popCost(i)=newsolCost;if popCost(i) < BestCostBestCost=popCost(i);Best_pos = X(i,:);endendendend%% Store Record for Current IterationIter_curve(it)=BestCost;Best_fitness = BestCost;History_best{it} = Best_pos;History_pos{it} = X;
end
end
%% This function is for checking boundary by using Eq. 19
function s=simplebounds(s,Lb,Ub)
ns_tmp=s;
I=ns_tmp<Lb;
% Apply to the lower bound
while sum(I)~=0ns_tmp(I)=Ub(I)+(ns_tmp(I)-Lb(I));I=ns_tmp<Lb;
end
% Apply to the upper bound
J=ns_tmp>Ub;
while sum(J)~=0ns_tmp(J)=Lb(J)+(ns_tmp(J)-Ub(J));J=ns_tmp>Ub;
end
% Check results
s=ns_tmp;
end
%%
function pop=initialization(num_pop,nd,Ub,Lb)if size(Lb,2)==1Lb=Lb*ones(1,nd);Ub=Ub*ones(1,nd);
end
x(1,:)=rand(1,nd);
a=4;
for i=1:(num_pop-1)x(i+1,:)=a*x(i,:).*(1-x(i,:));
end 
for k=1:ndfor i=1:num_poppop(i,k)=Lb(k)+x(i,k)*(Ub(k)-Lb(k));end
end
end

在这里插入图片描述

4.参考文献

[1] Chou J S, Truong D N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean[J]. Applied Mathematics and Computation, 2021, 389: 125535.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/541752.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Halcon文件操作

1、Region读写操作 region&#xff08;区域&#xff09;是一种重要的数据类型&#xff0c;用于表示图像中的特定区域。这些区域可以代表图像中的目标、感兴趣的区域、边缘、形状等等 read_image (Image, printer_chip/printer_chip_01) dev_open_window (0, 0, 512, 512, black…

mysql: 如何开启慢查询日志?

1 确认慢查询日志功能已开启 执行以下sql语句&#xff0c;查看慢查询功能是否开启&#xff1a; show VARIABLES like slow_query_log;如果为ON&#xff0c;表示打开&#xff1b;如果为OFF&#xff0c;表示没有打开&#xff0c;需要开启慢查询功能。 执行以下sql语句&#xff0…

数据结构与算法----复习Part 15 ()

本系列是算法通关手册LeeCode的学习笔记 算法通关手册&#xff08;LeetCode&#xff09; | 算法通关手册&#xff08;LeetCode&#xff09; (itcharge.cn) 目录 一&#xff0c;二叉搜索树&#xff08;Binary Search Tree&#xff09; 二叉搜索树的查找 二叉搜索树的插入 …

java组合模式揭秘:如何构建可扩展的树形结构

组合模式&#xff08;Composite Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许将对象组合成树形结构以表示整体/部分层次结构。组合模式使得客户端可以统一对待单个对象和组合对象&#xff0c;从而使得客户端可以处理更复杂的结构。 组合模式的主要组成部分包括&…

Unity开发一个FPS游戏之二

在之前的文章中,我介绍了如何开发一个FPS游戏,添加一个第一人称的主角,并设置武器。现在我将继续完善这个游戏,打算添加敌人,实现其智能寻找玩家并进行对抗。完成的效果如下: fps_enemy_demo 下载资源 首先是设计敌人,我们可以在网上找到一些好的免费素材,例如在Unity…

SD-WAN专线解决跨国业务应用和系统访问慢问题

在全球化背景下&#xff0c;跨国企业面临着日益增长的业务应用和系统访问需求。然而&#xff0c;由于地理位置和网络结构等因素的限制&#xff0c;跨国业务应用和系统访问常常受到网络连接速度慢的困扰。SD-WAN&#xff08;软件定义广域网&#xff09;专线作为一种新兴的网络技…

git小白入门

git是什么 Git是一种流行的版本控制系统&#xff0c;被广泛用于软件开发中来跟踪和管理代码的变化。它是由Linus Torvalds在2005年创建的&#xff0c;最初的目的是为了更高效地管理Linux内核的开发。Git使得多人在同一个项目上工作变得更加简单&#xff0c;可以轻松合并不同开…

Filter实现请求日志记录

将锁有得外部访问都记录在日志文件里面&#xff0c;设计这个功能是为了&#xff08;为什么&#xff09;&#xff1a; 1. 在不引入Promentheus进行接口监控时&#xff0c;基于日志文件就可以实现整个项目得监控。 2. 当出现问题时&#xff0c;可以基于此进行流量重放。 效果如…

Android 深入Http(2)加密与编码

可以对二进制数据&#xff08;比如图片、视频&#xff09; 经典算法&#xff1a; DES&#xff08;密钥短被弃用了&#xff09; AES &#xff08;密钥很长 很顶&#xff09; 速度快&#xff0c;效率高 IDEA 3DES&#xff08;三重DES&#xff0c;听起来就很慢和重 &#xf…

详解IPD流程之任务书(Charter)

IPD体系是一种全新的产品研发管理模式&#xff0c;它将研发合格产品整个过程分为确保开发做正确的事和如何正确地做事两个阶段。 确保开发做正确的事是指在产品进入研发之初就清晰地定义出有竞争力的产品&#xff0c;核心是确保产品能够对准客户需求&#xff0c;能够给客户带来…

【C++】手撕AVL树

> 作者简介&#xff1a;დ旧言~&#xff0c;目前大二&#xff0c;现在学习Java&#xff0c;c&#xff0c;c&#xff0c;Python等 > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;能直接手撕AVL树。 > 毒鸡汤&#xff1a;放弃自…