Spark杂谈

文章目录

    • 什么是Spark
    • 对比Hadoop
    • Spark应用场景
    • Spark数据处理流程
    • 什么是RDD
    • Spark架构相关进程
    • 入门案例:统计单词数量
    • Spark开启historyServer

什么是Spark

  • Spark是一个用于大规模数据处理的统一计算引擎
  • Spark一个重要的特性就是基于内存计算,从而它的速度可以达到MapReduce的几十倍甚至百倍

对比Hadoop

  • Spark是一个综合性质的计算引擎,Hadoop既包含Mapreduce(计算)还包含HDFS(存储)和YARN(资源管理),两个框架定位不同,从综合能力来说Hadoop更胜一筹
  • 计算模型:Spark任务可以包含多个计算操作,轻松实现复杂迭代计算,Hadoop中的mapreduce任务只包含Map和Reduce阶段,不够灵活
  • 处理速度:Spark任务的数据是存放在内存里面的,而Hadoop中的MapReduce任务是基于磁盘的

在实际工作中Hadoop会作为一个提供分布式存储和分布式资源管理的一个角色存在,Spark会依赖于Hadoop去做计算。

u=2638182824,2878592987&fm=253&fmt=auto&app=138&f=JPEG

Spark应用场景

  • 低延时的海量数据计算需求
  • 低延时的SQL交互查询需求
  • 准实时计算需求

Spark数据处理流程

image-20240315122547773

什么是RDD

  • 通常通过Hadoop上的文件,即HDFS文件进行创建,也可以通过程序中的集合来创建
  • 是Spark提供的核心抽象,全称为Resillient Distributed Dataset,即弹性分布式数据集
    • 弹性:RDD数据在默认的情况下存放内存中,但是在内存资源不足时,Spark也会自动将RDD数据写入磁盘
    • RDD在抽象上来说是一种元素数据的集合,它是被分区的,每个分区分布在集群中的不同节点上,从而RDD中的数据可以被并行操作
    • 容错性:最重要的特性就是提供了容错性,可以自动从节点失败中恢复过来。比如某个节点的数据由于故障导致分区的数据丢了,RDD会自动通过数据来源重新计算数据

Spark架构相关进程

  • Driver:我们编写的Spark程序由Driver进程负责执行
  • Master:集群的主节点中启动的进程
  • Worker:集群的从节点中启动的进程
  • Executor:由Worker负责启动的进程,执行数据处理和数据计算
  • Task:由Executor负责启动的线程,是真正干活的

image-20240314143728783

入门案例:统计单词数量

# scala 代码
object WordCountScala {def main(args: Array[String]): Unit = {val conf = new SparkConf();conf.setAppName("wordCount").setMaster("local")val context = new SparkContext(conf);val linesRDD = context.textFile("D:\\hadoop\\logs\\hello.txt");var wordsRDD = linesRDD.flatMap(line => line.split(" "))val pairRDD = wordsRDD.map(word => (word, 1))val wordCountRDD = pairRDD.reduceByKey(_ + _)wordCountRDD.foreach(wordCount => println(wordCount._1 + "---" + wordCount._2))context.stop()}
}
public class WordCountJava {public static void main(String[] args) {SparkConf sparkConf = new SparkConf();sparkConf.setAppName("worldCount").setMaster("local");JavaSparkContext javaSparkContext = new JavaSparkContext();JavaRDD<String> stringJavaRDD = javaSparkContext.textFile("D:\\hadoop\\logs\\hello.txt");// 数据切割,把一行数据拆分为一个个的单词// 第一个是输入数据类型,第二个是输出数据类型JavaRDD<String> wordRDD = stringJavaRDD.flatMap(new FlatMapFunction<String, String>() {@Overridepublic Iterator<String> call(String line) throws Exception {return Arrays.asList(line.split(" ")).iterator();}});// 迭代word,装换成(word,1)这种形式// 第一个是输入参数,第二个是输出第一个参数类型,第三个是输出第二个参数类型JavaPairRDD<String, Integer> pairRDD = wordRDD.mapToPair(new PairFunction<String, String, Integer>() {@Overridepublic Tuple2<String, Integer> call(String word) throws Exception {return new Tuple2<>(word, 1);}});// 根据key进行分组聚合JavaPairRDD<String, Integer> wordCountRDD = pairRDD.reduceByKey(new Function2<Integer, Integer, Integer>() {@Overridepublic Integer call(Integer v1, Integer v2) throws Exception {return v1 + v2;}});// 输出控制台wordCountRDD.foreach(new VoidFunction<Tuple2<String, Integer>>() {@Overridepublic void call(Tuple2<String, Integer> tuple2) throws Exception {System.out.println(tuple2._1 + "=:=" + tuple2._2);}});javaSparkContext.stop();}}

Spark开启historyServer

[root@hadoop04 conf]# vim spark-env.sh 
export SPARK_HISTORY_OPTS="-Dspark.history.ui.port=18080 -Dspark.history.fs.logDirectory=hdfs://hadoop01:9000/tmp/logs/root/logs"[root@hadoop04 conf]# vim spark-defaults.conf 
spark.eventLof.enable=true
spark.eventLog.compress=true
spark.eventLog.dir=hdfs://hadoop01:9000/tmp/logs/root/logs
spark.history.fs.logDirectory=hdfs://hadoop01:9000/tmp/logs/root/logs# 启动
[root@hadoop04 conf]# sbin/start-history-server.sh # 访问
http://hadoop04:18080/

image-20240315120605852

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/541981.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI人工智能培训讲师ChatGPT讲师叶梓培训简历及提纲ChatGPT等AI技术在医疗领域的应用

叶梓&#xff0c;上海交通大学计算机专业博士毕业&#xff0c;高级工程师。主研方向&#xff1a;数据挖掘、机器学习、人工智能。历任国内知名上市IT企业的AI技术总监、资深技术专家&#xff0c;市级行业大数据平台技术负责人。 长期负责城市信息化智能平台的建设工作&#xff…

YOLOV5 部署:基于web网页的目标检测(本地、云端均可)

1、前言 YOLOV5推理的代码很复杂,大多数都是要通过命令行传入参数进行推理,不仅麻烦而且小白不便使用。 本章介绍的web推理,仅仅需要十几行代码就能实现本地推理,并且只需要更改单个参数就可以很方便的部署云端,外网也可以随时的使用 之前文章介绍了QT的可视化推理界面,…

react-native使用FireBase实现google登陆

一、前置操作 首先下载这个包 yarn add react-native-google-signin/google-signin 二、Google cloud配置 Google Cloud 去google控制台新建一个android项目&#xff0c;这时候需要用到你自己创建的keystore的sha1值&#xff0c;然后会让你下载一个JSON文件&#xff0c;先保…

最新开源解密版TwoNav网址导航系统源码

源码简介 2024最新开源解密版TwoNav网址导航系统源码去授权破解版 内置二十多套主题模板。 已去授权&#xff0c;最新开源解密版。TwoNav 是一款开源的书签&#xff08;导航&#xff09;管理程序&#xff0c;使用PHP SQLite 3开发&#xff0c;界面简洁&#xff0c;安装简单&…

集合系列(二) -List接口详解

一、List简介 List 的数据结构就是一个序列&#xff0c;存储内容时直接在内存中开辟一块连续的空间&#xff0c;然后将空间地址与索引对应。 以下是List集合简易架构图 由图中的继承关系&#xff0c;可以知道&#xff0c;ArrayList、LinkedList、Vector、Stack都是List的四个…

自习室预订系统|基于springboot框架+ Mysql+Java+B/S架构的自习室预订系统设计与实现(可运行源码+数据库+设计文档+部署说明)

推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 目录 前台功能效果图 学生功能模块 管理员功能登录前台功能效果图 系统功能设计 数据库E-R图设计 lunwen参…

IDEA中的Project工程、Module模块的概念及创建导入

1、IDEA中的层级关系&#xff1a; project(工程) - module(模块) - package(包) - class(类)/接口具体的&#xff1a; 一个project中可以创建多个module一个module中可以创建多个package一个package中可以创建多个class/接口2、Project和Module的概念&#xff1a; 在 IntelliJ …

(done 剩个什么 3/4 unigram frequency 的玩意儿没懂) word2vec 算法,计算 嵌入矩阵(CBOW, Skip-gram)随机梯度下降法 SGD 负采样方案

参考视频1&#xff1a;https://www.bilibili.com/video/BV1vS4y1N7mo/?vd_source7a1a0bc74158c6993c7355c5490fc600 &#xff08;讲的太浅了&#xff09; 参考视频2&#xff1a;https://www.bilibili.com/video/BV1s64y1P7Qm?p4&vd_source7a1a0bc74158c6993c7355c5490fc…

css3 实现html样式蛇形布局

文章目录 1. 实现效果2. 实现代码 1. 实现效果 2. 实现代码 <template><div class"body"><div class"title">CSS3实现蛇形布局</div><div class"list"><div class"item" v-for"(item, index) …

【Unity+Vuforia】AR 发布安卓的设置

Player Settings > Resolution and Presentation > Default Orientation portrait Player Settings > Other Settings > Auto Graphics API 取消勾选 Player Settings > Other Settings > Graphics APIs 选择OpenGLES3删除其他的 Player Settings…

excel同类项合并求和怎么操作?

想必很多办公人士都熟悉excel这款软件&#xff0c;那么使用过程里&#xff0c;若想合并同类项数据并求和&#xff0c;具体是如何操作的呢&#xff1f;下面就是小编带来的excel合并同类项数据并求和的操作步骤&#xff0c;很简单哦&#xff0c;看完之后你也来试试吧! 先看一下原…

如何使用“Docker搭建prometheus监控体系“在Ubuntu服务器?

一、启动prometheus容器服务 1.在/usr/local/etc/目录下&#xff0c;创建文件夹prometheus mkdir prometheus/ 2.在文件夹prometheus下&#xff0c;创建prometheus.yml文件 touch prometheus.yml 3.启动prometheus容器服务 docker run -d --name prometheus -p 9090:9090 -…