YOLOv8 | 有效涨点,添加GAM注意力机制,使用Wise-IoU有效提升目标检测效果(附报错解决技巧,全网独家)

 目录

摘要

基本原理

通道注意力机制

空间注意力机制

GAM代码实现 

Wise-IoU 

WIoU代码实现

yaml文件编写

完整代码分享(含多种注意力机制)


摘要

人们已经研究了各种注意力机制来提高各种计算机视觉任务的性能。然而,现有方法忽视了保留通道和空间方面的信息以增强跨维度交互的重要性。因此,我们提出了一种全局注意力机制,通过减少信息减少和放大全局交互表示来提高深度神经网络的性能。引入了具有多层感知器的 3D 排列,用于通道注意以及卷积空间注意子模块。在 CIFAR-100 和 ImageNet-1K 上对所提出的图像分类任务机制的评估表明,我们的方法稳定优于最近使用 ResNet 和轻量级 MobileNet 的几种注意力机制。

基本原理

目标的设计是一种减少信息缩减并放大全局维度交互特征的机制。我们采用 CBAM 的顺序通道空间注意力机制并重新设计子模块。整个过程如图 所示。

GAM结构图
通道注意力机制

通道注意力子模块使用 3D 排列来保留三个维度的信息。然后,它使用两层 MLP(多层感知器)放大跨维度通道空间依赖性。 (MLP是一种编码器-解码器结构,其缩减比为r,与BAM相同。)通道注意子模块如图所示。 

通道注意力子模块
空间注意力机制

在空间注意力子模块中,为了关注空间信息,我们使用两个卷积层进行空间信息融合。我们还使用与 BAM 相同的通道注意子模块的缩减率 r。同时,最大池化会减少信息并产生负面影响。我们删除池化以进一步保留特征图。因此,空间注意力模块有时会显着增加参数的数量。为了防止参数显着增加,我们在 ResNet50 中采用带有通道洗牌的组卷积。没有组卷积的空间注意力子模块如图所示。 

空间注意力子模块
GAM代码实现 
class GAM_Attention(nn.Module):def __init__(self, c1, c2, group=True, rate=4):super(GAM_Attention, self).__init__()self.channel_attention = nn.Sequential(nn.Linear(c1, int(c1 / rate)),nn.ReLU(inplace=True),nn.Linear(int(c1 / rate), c1))self.spatial_attention = nn.Sequential(nn.Conv2d(c1, c1 // rate, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(c1, int(c1 / rate),kernel_size=7,padding=3),nn.BatchNorm2d(int(c1 / rate)),nn.ReLU(inplace=True),nn.Conv2d(c1 // rate, c2, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(int(c1 / rate), c2,kernel_size=7,padding=3),nn.BatchNorm2d(c2))def forward(self, x):b, c, h, w = x.shapex_permute = x.permute(0, 2, 3, 1).view(b, -1, c)x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)x_channel_att = x_att_permute.permute(0, 3, 1, 2)# x_channel_att=channel_shuffle(x_channel_att,4) #last shufflex = x * x_channel_attx_spatial_att = self.spatial_attention(x).sigmoid()x_spatial_att = channel_shuffle(x_spatial_att, 4)  # last shuffleout = x * x_spatial_att# out=channel_shuffle(out,4) #last shufflereturn out

以上代码添加在 ./ultralytics/nn/modules/conv.py 中

Wise-IoU 

Yolov7提出的损失函数是GIoU(Generalized Intersection over Union),能在更广义的层面上计算IoU(Intersection over Union),但是当两个预测框完全重合时,不能反映出实际情况,此时GIoU就要退化为IoU,并且GIoU对每个预测框与真实框均要计算最小外接框,故损失函数计算及收敛速度受到限制。
为了弥补这种遗憾,改进的网络中使用了WIoU(Wise-IoU)作为损失函数。WIoU v3作为边界框回归损失,包含一种动态非单调机制,并设计了一种合理的梯度增益分配,该策略减少了极端样本中出现的大梯度或有害梯度。该损失方法计算更多地关注普通质量的样本,进而提高网络模型的泛化能力和整体性能。

虽然几种主流损失函数都采用静态聚焦机制,但WIoU不仅考虑了方位角、质心距离和重叠面积,还引入了动态非单调聚焦机制。 WIoU应用合理的梯度增益分配策略来评估锚框的质量。WIoU有三个版本。 WIoU v1 设计了基于注意力的预测框损失,WIoU v2 和 WIoU v3 添加了聚焦系数。

wiou原理图

最小的包围盒(绿色)和中心点的连接(红色),其中并集的面积为 Su = wh + wgthgt − WiHi .

WIoU代码实现
def WIoU(cls, pred, target, self=None):self = self if self else cls(pred, target)dist = torch.exp(self.l2_center / self.l2_box.detach())return self._scaled_loss(dist * self.iou)

 下面的代码替换loss.py的class BboxLoss

class BboxLoss(nn.Module):def __init__(self, reg_max, use_dfl=False):"""Initialize the BboxLoss module with regularization maximum and DFL settings."""super().__init__()self.reg_max = reg_maxself.use_dfl = use_dfldef forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):"""IoU loss."""weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)loss,iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False,type_='WIoU')loss_iou=loss.sum()/target_scores_sum# DFL lossif self.use_dfl:target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weightloss_dfl = loss_dfl.sum() / target_scores_sumelse:loss_dfl = torch.tensor(0.0).to(pred_dist.device)return loss_iou, loss_dfl
yaml文件编写
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 3, GAM_Attention, [1024]]- [-1, 1, SPPF, [1024, 5]]  # 10# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 13#- [-1, 1, GAM_Attention, [512,512]]- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 16 (P3/8-small)#- [-1, 1, GAM_Attention, [256,256]]- [-1, 1, Conv, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 19 (P4/16-medium)#- [-1, 1, GAM_Attention, [512,512]]- [-1, 1, Conv, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 22 (P5/32-large)#- [-1, 1, GAM_Attention, [1024,1024]]- [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)
完整代码分享(含多种注意力机制)

内涵SA,CBAM,GAM,ECA等多种注意力机制

链接: https://pan.baidu.com/s/1T9bVifTPCRMv2t7eREsuEw?pwd=nbrt 提取码: nbrt 

报错解决办法

YOLOv8 | 添加注意力机制报错KeyError:已解决,详细步骤-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/542048.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DHCP在企业网的部署及安全防范

学习目标: 1. DHCP能够解决什么问题? 2. DHCP服务器如何部署? 3. 私接设备会带来什么问题以及如何防范? 给DHCP服务器配置地址: 地址池: DHCP有2种分配模式:全局分配和接口分配 DHCP enable

提交数据加快百度搜索引擎收录

百度站长工具做了更新,百度收录的地址分享如下,新站点提交后,可以加快百度收录。 普通收录_加快网站内容抓取,快速提交数据工具_站长工具_网站支持_百度搜索资源平台普通收录工具可实时向百度推送数据,创建并提交site…

微服务学习day02 -- nacos配置管理 -- Feign远程调用 -- Gateway服务网关

0.学习目标 1.Nacos配置管理 Nacos除了可以做注册中心,同样可以做配置管理来使用。 1.1.统一配置管理 当微服务部署的实例越来越多,达到数十、数百时,逐个修改微服务配置就会让人抓狂,而且很容易出错。我们需要一种统一配置管理…

爱发电开发者Webhook URL如何配置并且成功返回响应

Webhook URL 爱发电提供了webhook和api两种方式为开发者提供便利。 webhook功能需要配置好url,每当有订单时,会请求配置的url;API功能需要开发者通过token生成sign签名,主动请求接口查询历史订单 Webhook URL(用来被…

【经验分享】Wubuntu------体验Windows和Ubuntu的结合体

【经验分享】Wubuntu------体验Windows和Ubuntu的结合体 最近看到有一款Wubuntu的文章,对于习惯使用windows操作系统,又不熟悉ubuntu系统的程序员小白来说,可以说是福音了。目前的Wubuntu兼容性可能还有一点问题,如果再迭代几次的…

【Maven学习笔记】Maven入门教程(适合新手反复观看学习)

Maven学习笔记 Maven的简要介绍Maven的安装和配置Maven的安装Maven安装的常用配置 Maven的使用入门编写pom编写主代码编写测试代码打包和运行使用Archetype生成项目骨架 Maven核心概念的阐述坐标案例分析依赖依赖的范围传递性依赖依赖范围依赖调节可选依赖Maven依赖常用的技巧 …

G4012溧宁高速青云岭隧道隧道高清晰广播现场测试效果视频

隧道作为高速公路的特殊路段,具有改善路线线形,缩短行车里程节省时间等优点。但高速公路隧道结构异于一般路面建筑,内部路基宽度相对狭窄、空间密闭性强、视野范围小、能见度低,行车环境较复杂,车辆行驶速度高、车流密…

关于UE的相机震动CameraShake

创建CameraShake资源 CameraShake配置是个蓝图类,我们选择创建BlueprintClass,父类选择CameraShakeBase即可。 参数调整 目前主要用到了 LocationAmplitudeMultiplier 1 LocationFrequencyMultiplier 10 RotationAmplitudeMultiplier 1 Rotation…

使用Spark清洗统计业务数据并保存到数据库中

1、打开前面创建的项目“BigData-Etl-KongGuan”,创建一些数据库访问的工具类和辅助类。 1)打开SpringBoot项目:BigData-Etl-KongGuan 2)创建数据库访问的工具类和辅助类: com.qrsoft.etl.dao.IBaseDao数据库访问的通…

因聚而生 数智有为丨软通动力携子公司鸿湖万联亮相华为中国合作伙伴大会2024

3月14日,以“因聚而生 数智有为”为主题的“华为中国合作伙伴大会2024”在深圳隆重开幕。作为华为的重要合作伙伴和本次大会钻石级(最高级)合作伙伴,软通动力深度参与本次盛会,携前沿数智化技术成果和与华为的联合解决…

网络通信与网络协议

网络编程是指利用计算机网络实现程序之间通信的一种编程方式。在网络编程中,程序需要通过网络协议(如 TCP/IP)来进行通信,以实现不同计算机之间的数据传输和共享。在网络编程中,通常有三个基本要素 IP 地址:定位网络中某台计算机端口号port:定…

【C语言】—— 指针一 : 初识指针(上)

【C语言】—— 指针一 : 初识指针(上) 一、内存和地址1.1、如何理解内存和地址1.2、 如何理解编址 二、指针变量和地址2.1、取地址操作符 &2.2、 指针变量2.3、 解引用操作符 ∗ * ∗2.4、指针变量的大小 三、指针变量类型的意义3.1、 指…