基于GA优化的CNN-GRU-Attention的时间序列回归预测matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1卷积神经网络(CNN)在时间序列中的应用

4.2 长短时记忆网络(LSTM)处理序列依赖关系

4.3 注意力机制(Attention)

4.4GA优化

5.算法完整程序工程


1.算法运行效果图预览

优化前:

优化后:

2.算法运行软件版本

matlab2022a

3.部分核心程序

...........................................................while gen < MAXGENgenPe0 = 0.999;pe1 = 0.001; FitnV=ranking(Objv);    Selch=select('sus',Chrom,FitnV);    Selch=recombin('xovsp', Selch,Pe0);   Selch=mut( Selch,pe1);   phen1=bs2rv(Selch,FieldD);   for a=1:1:NIND  X           = phen1(a,:);%计算对应的目标值[epls]      = func_obj(X);E           = epls;JJ(a,1)     = E;end Objvsel=(JJ);    [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   gen=gen+1; Error2(gen) = mean(JJ);
end 
figure
plot(smooth(Error2,MAXGEN),'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');[V,I] = min(JJ);
X     = phen1(I,:);LR             = X(1);
numHiddenUnits = floor(X(2))+1;% 定义隐藏层中LSTM单元的数量%CNN-GRU-ATT
layers = func_model2(Dim,numHiddenUnits);%设置
%迭代次数
%学习率为0.001
options = trainingOptions('adam', ...       'MaxEpochs', 1500, ...                 'InitialLearnRate', LR, ...          'LearnRateSchedule', 'piecewise', ...  'LearnRateDropFactor', 0.1, ...        'LearnRateDropPeriod', 1000, ...        'Shuffle', 'every-epoch', ...          'Plots', 'training-progress', ...     'Verbose', false);%训练
Net = trainNetwork(Nsp_train2, NTsp_train, layers, options);%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);%归一化还原
T_sim1=Dpre1*Vmax2;
T_sim2=Dpre2*Vmax2;%网络结构
analyzeNetwork(Net)figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid onsubplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...'LineWidth',2,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid onsubplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...'LineWidth',1,...'MarkerSize',6,...'MarkerEdgeColor','k',...'MarkerFaceColor',[0.9,0.0,0.0]);xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);save R2.mat Num2 Tat_test T_sim2
119

4.算法理论概述

       时间序列预测是许多领域中的核心问题,如金融市场分析、气候预测、交通流量预测等。近年来,深度学习在时间序列分析上取得了显著的成果,尤其是卷积神经网络(CNN)、长短时记忆网络(LSTM)和注意力机制(Attention)的结合使用。

4.1卷积神经网络(CNN)在时间序列中的应用

       在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

        CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

4.2 长短时记忆网络(LSTM)处理序列依赖关系

        LSTM单元能够有效捕捉时间序列中的长期依赖关系。在一个时间步t,LSTM的内部状态h_t和隐藏状态c_t更新如下:

       长短时记忆网络是一种特殊的循环神经网络(RNN),设计用于解决长序列依赖问题。在时间序列预测中,LSTM能够有效地捕捉时间序列中的长期依赖关系。

4.3 注意力机制(Attention)


       注意力机制是一种让模型能够自动地关注输入数据中重要部分的技术。在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。

       CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下:

       使用CNN处理原始时间序列数据,提取局部特征。这可以通过多个卷积层和池化层的堆叠来实现。
       将CNN的输出作为LSTM的输入,捕捉时间序列中的长期依赖关系。这里可以使用多层LSTM来增强模型的表达能力。
     在LSTM的输出上应用注意力机制,计算每个历史时刻的注意力权重,并生成上下文向量。这个上下文向量包含了所有历史时刻的信息,但已经根据当前时刻的查询进行了加权。
将上下文向量与当前时刻的输入或隐藏状态进行融合,生成最终的预测结果。这可以通过一个简单的全连接层来实现。

4.4GA优化

       遗传算法是一种启发式搜索算法,用于优化模型的超参数。它通过模拟自然选择和遗传学的原理,在搜索空间中寻找最优解。GA的基本步骤包括初始化种群、计算适应度、选择、交叉和变异。在模型优化中,种群的个体可以表示不同的超参数组合,适应度函数可以基于模型在验证集上的性能来定义。通过多轮的选择、交叉和变异操作,GA能够找到一组最优的超参数组合,使得模型在测试集上达到最佳性能。

         该模型结合了CNN、GRU和Attention机制的优势,用于处理时间序列数据。CNN擅长捕捉局部特征,GRU能够处理序列数据的长期依赖关系,而Attention机制则允许模型在预测时关注最重要的信息。遗传算法(GA)用于优化模型的超参数,如学习率、层数、神经元数量等。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/542357.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

matplotlib绘图如何处理日期数据如“x月x日”

问题描述 数据文件如下图所示&#xff1a; 想要绘制横坐标为Date&#xff0c;纵坐标为Height的折线图&#xff08;其他类型的图也是类似的&#xff09;。关键的问题在于如何处理这种日期数据&#xff0c;正常绘图&#xff0c;并设置横坐标每隔x天显示刻度。 本文提供一个解决…

STM32初识2

复位和时钟控制&#xff08;RCC&#xff1a;reset clock control&#xff09; 系统复位 当发生以下任一事件时&#xff0c;产生一个系统复位&#xff1a; 1. NRST 引脚上的低电平 ( 外部复位 ) 2. 窗口看门狗计数终止 (WWDG 复位 ) 3. 独立看门狗计数终止 (IWDG 复位 ) …

服务器遭遇挖矿病毒syst3md及其伪装者rcu-sched:原因、症状与解决方案

01 什么是挖矿病毒 挖矿病毒通常是恶意软件的一种&#xff0c;它会在受感染的系统上无授权地挖掘加密货币。关于"syst3md"&#xff0c;是一种特定的挖矿病毒&#xff0c;它通过在受感染的Linux系统中执行一系列复杂操作来达到其目的。这些操作包括使用curl从网络下载…

我的尝试:Codigger + Vim

若您愿意耐心投入&#xff0c;学习 Vim 的过程其实远比想象中轻松。我对 Vim 产生兴趣&#xff0c;主要是源于它对提升生产力的巨大潜力。我尝试了 Neovim、NvChad 以及 Codigger Vim 插件&#xff0c;如今我的工作效率已远超从前。 那么&#xff0c;Vim 究竟是什么呢&#xff…

linux之权限管理和组

一&#xff0c;ACL权限 1.1&#xff0c;什么是acl权限&#xff1f; ACL是Access Control List的缩写&#xff0c;即访问控制列表。可以通过下列的实例来理解ACL的作用&#xff1a; 思考如何实现如下的权限控制&#xff1a; 每个项目成员在有一个自己的项目目录&#xff0c;…

MySQL MHA故障切换

目录 一、案例分析 1.1、案例概述 1.2、案例前置知识点 1&#xff09;什么是 MHA 2&#xff09;MHA 的组成 3&#xff09;MHA 的优势 4&#xff09;MHA 现状 1.3、案例环境 1&#xff09;本案例环境 ​编辑 2&#xff09;案例需求 3&#xff09;案例实现思路…

Nuxt3 初学,基础配置,页面结构搭建,引入element

1.下载Nuxt框架 Nuxt 中文站 - 直观的Web框架 Nuxt3文档 NuxtNuxt是一个开源框架&#xff0c;它使web开发直观而强大。自信地创建高性能和生产级全栈web应用程序和网站。https://www.nuxt.com.cn/根据官方文档进行配置 2.配置页面 1.主要页面结构 导航栏内容底部 1.在comp…

LeetCode每日一题——两数之和

两数之和OJ链接&#xff1a;1. 两数之和 - 力扣&#xff08;LeetCode&#xff09; 题目&#xff1a; 思路&#xff1a; 在读懂题目后很多人觉得这种题目很简单&#xff0c;但是不管怎么写&#xff0c;在VS等其他编译器上能跑成功&#xff0c;但是在LeetCode上就是没办法通过。…

面试常问,ADC,PWM

一 PWM介绍 pwm全名&#xff08;Pulse Width Modulation&#xff09;&#xff1a;脉冲宽度调制 在具有惯性的系统中&#xff0c;可以通过对一系列脉冲的宽度进行调制&#xff0c;来等效地获得所需要的模拟参量&#xff0c;常应用于电机控速等领域。PWM一定程度上是数字到模拟…

Ansible非标记语言YAML与任务剧本Playbook

前言 上篇介绍了 Ansible 单模块&#xff08;AD-Hoc&#xff09;的相关内容Ansible自动化运维Inventory与Ad-Hoc-CSDN博客&#xff0c;Ad-Hoc 命令是一次性的、即时执行的命令&#xff0c;用于在远程主机上执行特定任务&#xff0c;这些命令通常用于快速执行简单的任务。当需要…

专业无网设备如何远程运维?向日葵远程控制能源场景案例解析

清洁能源领域&#xff0c;拥有庞大的上下游产业链&#xff0c;涉及的相关工业设备门类多、技术覆盖全、行业应用广。在这一领域内&#xff0c;相关专业设备的供应商的核心竞争力除了本身产品的技术能力之外&#xff0c;服务也是重要的一环。 某企业作为致力于节能环保方向的气…

vscode创建文件夹跟在后面,怎么解决?

如果你遇到类似问题。 按照以下操作即可。