【小白学机器学习8】统计里的自由度DF=degree of freedom, 以及关于df=n-k, df=n-k-1, df=n-1 等自由度公式

目录

1 自由度 /degree of freedom / df

1.1 物理学的自由度

1.2 数学里的自由度

1.2.1 数学里的自由度

1.2.2 用线性代数来理解自由度(需要补充)

1.2.3 统计里的自由度

1.3 统计学里自由度的定义

2 不同对象的自由度

2.1 纯公式的自由度:纯公式,没采样无样本时

2.2 抽样分析时:纯样本的自由度

2.3 公式里某个特定变量的自由度

3 自由度的公式

3.1 自由度的基础公式 df=n-k

3.2 ESS 残差平方和的误差 df=n-k-1

3.3  回归方程的自由度,  df=n-k-1=n-1

3.3.1 一元线性回归

3.3.2 多元线性回归

4 参考

5 其他(未完成)


1 自由度 /degree of freedom / df

1.1 物理学的自由度

理论力学:(下面这段摘自网上)

  • 确定物体的位置所需要的独立坐标数称作物体的自由度,当物体受到某些限制时——自由度减少。
  • 一个质点在空间自由运动,它的位置由三个独立坐标就可以确定,所以质点的运动有三个自由度。
  • 假如将质点限制在一个平面或一个曲面上运动,它有两个自由度。
  • 假如将质点限制在一条直线或一条曲线上运动,它只有一个自由度。
  • 刚体在空间的运动既有平动也有转动,其自由度有六个,即三个平动自由度x、y、z和三个转动自由度a、b、q。如果刚体运动存在某些限制条件,自由度会相应减少。

1.2 数学里的自由度

1.2.1 数学里的自由度

  • 数学上,自由度是一个随机向量的维度数
  • 也就是一个向量能被完整描述所需的最少单位向量数

1.2.2 用线性代数来理解自由度需要补充

  • 从线性代数的角度理解
  • 自由度就是向量/矩阵/张量的维度,秩。最少需要用几个维度来现实就是自由度.

1.2.3 统计里的自由度

  • 样本容量越大,自由度就越高,就越趋近于正态分布,实验就更加合理
  • 下图时转载的,文章链接附在最后

1.3 统计学里自由度的定义

自由度通常用于抽样分布中。

统计学中:在统计模型中,自由度指样本中可以自由变动的独立不相关的变量的个数,当有约束条件时,自由度减少。

  • 样本中独立或能自由变化的数据的个数,称为该统计量的自由度。
  • 自由度指的是计算某一统计量时,取值不受限制的变量个数。

2 不同对象的自由度

  • 通用的自由度公式,都是n-k。但是不同对象下的DF的意义不同
    • 如果讲的是公式的自由度,是自变量的个数  df=n
    • 如果讲的是样本的自由度,是样本的数量减去约束条件个数,df=n-k
    • 如果讲的是某个公式里某个特定变量的自由度,是样本的数量减去约束条件个数,df=n-k

2.1 纯公式的自由度:纯公式,没采样无样本时

  • 抽象的公式的自由度:不受约束自变量的个数
  • 不受约束的自变量个数就是公式的自由度。

举例:

  • 一元线性回归:y=ax+b
    • x是自变量,自由度1
    • y是因变量,没有自由度
    • 总自由度1
  • 多元线性回归:y=a1X1+a2X2+......anXn
    • x是自变量,自由度n
    • y是因变量,没有自由度
    • 总自由度n

2.2 抽样分析时:纯样本的自由度

  • 样本的自由度=n-k
  • 样本数量n
  • 关于样本的约束条件k,比如用到了样本的均值,就少1个自由度

举例

  • a+b=1,其中a,b都是变量,那么总自由度为1,因为若a为变量,b会受到1-a的约束,所以不自由。自由度=2个自变量-1被限制的自变量=1
  • 总体平均数,u=average(x)。因为总体内,每个样本都是独立的,所以自由度就是总体的容量n
  • 样本平均数,average(xi) ,假设有10个样本,平均数=1,那只有前9个数可以自由取值,第10个数,一定得受到平均值得约束,因此自由度=n-1=10-1=9
  •  总体方差,公式为
  • 样本方差,公式为,因为本身是一个样本的约束,所以自由度=n-1

2.3 公式里某个特定变量的自由度

  • 如果讲的是公式里某个特定变量的自由度,是样本的数量减去约束条件个数,df=n-k
  • 通用的公式都是这个,df=n-k
  • 但是还可以细分,下面详细展开

3 自由度的公式

3.1 自由度的基础公式 df=n-k

自由度计算公式:自由度=样本个数-样本数据受约束条件的个数,即df = n - k(df自由度,n样本个数,k约束条件个数)

  • df=n-k。
  • 自由度df:
    • 不受限制的变量个数 
    • 不受限制的样本个数
  • n:
    • 自变量个数 
    • 样本数量
  • k:
    • 被限制的条件数或变量个数
    • 或计算某一统计量时用到其它独立统计量的个数。
    • 这些变量之间的有公式关系等形成的约束个数(应该要减掉一些线性相关的约束)

3.2 ESS 残差平方和的误差 df=n-k-1 (比n-k多出的-1是指那个截距参数)

  • 需要考虑2方面
  • 模型中自变量的个数,+自由度
  • 模型中有几个未知数就要消耗几个自由度,-自由度

举例

  • 观测值y
  • 预测值y^
  • 一元线性回归模型 y=b0+b1X+ε,因为每个y^都是用这个模型估算出来的
  • y^-y的误差就是残差,也就是ε
  • b0 常数,截距
  • b1 自变量x的参数,未知,需要求
  • ε   残差,残差的均值=0

  • 另外,我们心中有一个理想模型y=b0+b1X (虽然不一定存在,不能能找到),但是我们相信我们的观测值符合一个这样的理想直线模型(否则我们也不会用线性回归,而是用曲线或者其他了^ ^)
  • y^观测值,记录下来
  • 理想模型的y观测值:y=b0+b1X 
  • ESS=Σ(y^-y)**2 =Σ(y^-b0+b1X)**2

  • 残差平方和  ESS 的自由度 
  • 残差平方和  ESS=Σ(y^-y)**2,因为因为每个y^=b0+b1X,包含2个参数b0,b1 因此需要确定这2个参数,就需要2个约束才能算出来
  • 为什么2个参数需要2个约束:因为解方程的需要,而且这2个约束还不能是线性相关的才行。因此有几个未知参数就消耗几个自由度
  • 所以:
    • 一元线性回归的ESS的自由度df = n-k-1=n-1-1=n-2
    • 多元线性回归的ESS的自由度 df =n-k-1
    • 其中k 是变量个数,1是截距常量个数。

3.3  回归方程的自由度,  df=n-k-1=n-1

3.3.1 一元线性回归

  • 回归方程 y=b0+b1X
  • 其中自变量X,只有1个,自由度+1
  • 而参数是2个,也就是2个未知数,b0 和b1,自由度-2
  • 如果有n个样本
  • 那么回归方程的自由度= n-2+1=n-1

3.3.2 多元线性回归

  • 回归方程 y=b0+b1X+b2X+....+bkX,
  • 其中自变量X,有k个自变量,自由度+k
  • 而参数是k+1个,所有x的参数,还一个一个截距。这些都是未知数。
  • 如果有n个样本
  • 那么回归方程的自由度= n+k-(k+1)=n-1


4 参考

【弱鸡版】什么回归中自由度(degrees of freedom),就是这么简单! - 知乎自由度是什么?我们先来百度一下: “自由度(degree of freedom, df)指的是计算某一统计量时,取值不受限制的变量个数。通常df=n-k。 其中n为样本数量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/607458488

一元线性回归模型中残差平方和的自由度为什么是n-2 - 爱问频道 - 经管之家(原人大经济论坛)一元线性回归模型中残差平方和的自由度为什么是n-2,一元线性回归模型中残差平方和的自由度为什么是n-2?,经管之家(原人大经济论坛)icon-default.png?t=N7T8https://bbs.pinggu.org/thread-640905-1-1.html

下面这个解释了多种DF的定义,可惜我还没仔细看~~ 

统计学“自由度”详解 - 知乎本文皆为个人看法,才疏学浅,如果有不妥不准确的对方,还请指正。有些数学推导可能显得不严谨,主要是为了数学基础薄弱的同学能看懂。 “自由度”是统计学中一个很不好懂的概念,因为它的定义有好几个,而每个定…icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/81099139

5 其他(未完成)

当想知道适不适合用回归分析时,最简单的方法是做散点图,对于方差分析则做箱线图或是条形图。

均方差:标准差SD

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/542961.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ant Design Pro complete版本的下载及运行

前言 complete 版本提供了很多基础、美观的页面和组件,对于前端不太熟练的小白十分友好,可以直接套用或者修改提供的代码完成自己的页面开发,简直不要太爽。故记录一些下载的步骤。 环境 E:\code>npm -v 9.8.1E:\code>node -v v18.1…

基于网络爬虫的购物平台价格监测系统的设计与实现

通过对网络爬虫的购物平台价格监测系统的业务流程进行梳理可知,网络爬虫的购物平台价格监测系统主要由前台买家模块、后台卖家模块以及管理员模块构成。前台功能包含登录功能、注册功能、系统首页功能、唯品会商品详情浏览、唯品会商品收藏、唯品会商品点赞、唯品会…

cannot find -xml2: No such file or directory的解决方法

一,问题现象 在编译库的时候出现如下图所示的报错:C:/msys64/mingw32/bin/…/lib/gcc/i686-w64-mingw32/13.2.0/…/…/…/…/i686-w64-mingw32/bin/ld.exe: ca nnot find -lxml2: No such file or directory collect2.exe: error: ld returned 1 exit s…

【C#】【SAP2000】读取SAP2000中frame单元列表到Grasshopper中

private void RunScript(bool build, ref object p1, ref object p2, ref object Profile, ref object stressRatio, ref object temperatureLoad, ref object displacement, ref object frameList){if (build true){// 声明变量int ret;int Numit 0;int[] ObjType new int[…

Java学习记录(二十一)网络编程

CS架构和BS架构 这两个架构是现在市面上主流的两个架构,CS架构主要是客户端服务器,而BS架构主要是网页服务器。BS架构的优点是方便,所有数据通过服务器传输,缺点也很明显,由于所有数据都是通过网络传输,导…

1.实用Qt:解决绘制圆角边框时,圆角锯齿问题

目录 问题描述 解决方案 方案1: 方案2: 结果示意图 问题描述 做UI的时候,我们很多时候需要给绘制一个圆角边框,初识Qt绘制的童鞋,可能绘制出来的圆角边框很是锯齿,而且粗细不均匀,如下图&…

第五十六回 徐宁教使钩镰枪 宋江大破连环马-飞桨图像分类套件PaddleClas初探

宋江等人学会了钩镰枪,大胜呼延灼。呼延灼损失了很多人马,不敢回京,一个人去青州找慕容知府。一天在路上住店,马被桃花山的人偷走了,于是到了青州,带领官兵去打莲花山。 莲花山的周通打不过呼延灼&#xf…

金融知识分享系列之:MACD指标精讲

金融知识分享系列之:MACD指标精讲 一、MACD指标二、指标原理三、MACD指标参考用法四、MACD计算步骤五、MACD分析要素六、根据快线DIF位置判断趋势七、金叉死叉作为多空信号八、快线位置交叉信号九、指标背离判断行情反转十、差离值的正负十一、差离值的变化十二、指…

如何在webapp中手动部署

前言:这个有不知道怎么下载Tomcat的可以看我这篇博客的前面,有相关链接,下载好后我那边也有如何运行成功的 在idea中配置tomcat服务器,部署一个项目-CSDN博客 接下来进入这篇博客的正题!怎么手动部署 先找到我们下载…

3. ElasticSearch搜索技术深入与聚合查询实战

1. ES分词器详解 1.1 基本概念 分词器官方称之为文本分析器,顾名思义,是对文本进行分析处理的一种手段,基本处理逻辑为按照预先制定的分词规则,把原始文档分割成若干更小粒度的词项,粒度大小取决于分词器规则。 1.2 …

SQL注入攻击原理与自动化检测技术的深度探究及其实战应用

SQL注入原理 SQL注入攻击的原理是基于攻击者能够控制应用程序与数据库之间的SQL查询。当应用程序将用户输入的数据直接嵌入到SQL查询中,而没有进行适当的验证或转义时,攻击者就可以通过输入精心构造的数据来操纵SQL查询的逻辑。 例如,假设有…

ubuntu(20.04)-安装JAVA环境-IDEA

1.下载IDEA 2.解压文件 sudo tar -zxvf idealC-2022.2.3.tar.gz -C /opt 3.添加环境变量: .vim ~/.bashrc export IDEA_HOME/opt/ideaIC-2022.2.3/ export PATH${IDEA_HOME}/bin:$PATH source ~/.bashrc 4.启动: cd /opt/ideaIC-2…