Redis中的缓存设计

缓存穿透

缓存穿透是指查询一个根本不存在的数据,缓存层和存储层都不会命中,通常处于容错的考虑,如果从存储层查不到数据则不写入缓存层。缓存穿透将导致不存在的数据每次请求都要到存储层去查询,失去了缓存保护后端存储的意义。造成缓存穿透的基本原因有两个:

  • 1.自身业务或者数据出现问题
  • 2.一些恶意攻击、爬虫等造成大量空命中。

解决方案

1.缓存空对象

String get(String key) {// 从缓存中获取数据String cacheValue = cache.get(key);// 缓存为空if (StringUtils.isBlank(cacheValue)) {// 从存储中获取String storageValue = storage.get(key);cache.set(key, storageValue);// 如果存储数据为空,需要设置一个过期时间(300秒)if (storageValue == null) {cache.expire(key, 64 * 5);}return storageValue;} else {// 缓存非空return cacheValue;}
}

2.布隆过滤器

对于恶意攻击,向服务器请求大量不存在的数据造成的缓存穿透,还可以用布隆过滤器先做一次过滤,对于不存在的数据布隆过滤器一般都能够过滤掉,不让请求再往后端发送。当布隆过滤器说某个值存在
时,这个值可能不存在;当它说不存在时,那就肯定不存在.布隆过滤器就是一个大型的位数组和几个不一样的无偏hash函数。所谓无偏就是能够把元素的hash值算的比较均匀。向布隆过滤器中添加key时,会使用多个hash函数都会算得一个不同的位置。再把位数组的这几个位置都置为1,就完成了add操作。向布隆过滤器询问key是否存在时,跟add一样,也会把hash的几个位置都算出来,看看位数组中这几个位置是否都为1,只要有一个位为0,那么说明布隆过滤器中这个key不存在。如果都是1,这并不能说明这个key就一定存在,只是极有可能存在,因为这些位置为1可能是因为其他的key存在所致。如果这个位数组比较稀疏,这个概率就会很大,如果这个位数组比较拥挤,这个概率就会很低。这种方法适用于数据命中不高、数据相对固定、实时性低(通常是数据集较大)的应用场景,
代码维护较为复杂,但是缓存空间占用很少
在这里插入图片描述

示例

布隆过滤器使用示例,需要引入Redisson依赖

<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.6.5</version></dependency>
// 初始化布隆过滤器
RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");
// 初始化布隆过滤器:预计元素为100000000L,误差率为3%
bloomFilter.tryInit(100000000L, 0.03);// 把所有数据存入布隆过滤器
void init() {for (String key : keys) {bloomFilter.put(key);}
}String get(String key) {// 从布隆过滤器这一级缓存判断下key是否存在Boolean exist = bloomFilter.contains(key);if (!exist) {return "";}// 从缓存中获取数据String cacheValue = cache.get(key);// 缓存为空if (StringUtils.isBlank(cacheValue)) {// 从存储中获取String storageValue = storage.get(key);cache.set(key, storageValue);// 如果存储数据为空,需要设置一个过期时间(300秒)if (storageValue == null) {cache.expire(key, 64 * 5);}return storageValue;} else {// 缓存非空return cacheValue;}
}

使用布隆过滤器需要把所有数据提前放入布隆过滤器,并且在增加数据时也要往布隆过滤器里放,布隆过滤器缓存过滤伪代码:
注意:布隆过滤器不能删除数据,如果要删除得重新初始化数据

缓存失效(击穿)

由于大批量缓存存在同一时间失效可能导致大量请求同时穿透缓存直达数据库,可能会造成数据库瞬间压力过大甚至挂掉,对于这种情况我们在批量增加缓存时最好将这一批数据的缓存过期时间设置为一个时间段内的不同时间。

String get(String key) {// 从缓存中获取数据String cacheValue = cache.get(key);// 缓存为空if (StringUtils.isBlank(cacheValue)) {// 从存储中获取String storageValue = storage.get(key);cache.set(key, storageValue);// 设置一个过期时间(300~600之间的一个随机数)int expireTime = new Random().nextInt(300) + 300;if (storageValue == null) {cache.expire(key, expireTime);}return storageValue;} else {// 缓存非空return cacheValue;}
}

缓存雪崩

缓存雪崩指的是缓存曾支撑不住或宕掉后,流量会像奔逃的野牛一样,打向后端存储层。由于缓存层承载着大量请求,有效地保护了存储层,到那时如果缓存层由于某些原因不能提供服务(比如超大并发过来,缓存层支撑不住,或者由于缓存设计不好,类似大量请求访问bigkey,导致缓存能支撑的并发急剧下降),于是大量请求都会打到存储层,存储层的调用量会暴增,造成存储层也会级联宕机的情况。

解决方案

预防和解决缓存雪崩问题,可以从三个方面着手:

  • 1.保证缓存层服务高可用性,比如使用Redis Sentinel或Redis Cluster
  • 2.依赖隔离组件为后端限流熔断并降级。比如使用Sentinel或Hystrix限流降级组件比如服务降级,我们可以针对不同的数据采取不同的处理方式。当业务应用访问的是非核心数据(例如电商商品属性,用户信息等)时,暂时停止从缓存中查询这些数据,而是直接返回预定义的默认降级信息、控制或是错误提示信息;当业务应用访问的是核心数据(例如电商商品库存)时,仍然允许查询缓存,如果缓存缺失,也可以继续通过数据库读取
  • 3.提前演练。在项目上线前,演练缓存层宕机后,应用以及后端的负载情况以及可能出现的问题,在此基础上做一些预案设定

热点缓存key重建优化

开发人员使用"缓存+过期时间"的策略既可以加速数据读写,又保证数据的定期更新,这种模式基本能够满足绝大部分需求。但是有两个问题如果同时出现,可能就会对应用造成致命的危害:

  • 1.当前key是一个热点key(例如一个热门的娱乐新闻),并发量非常大
  • 2.重建缓存不能在短时间内完成,可能是一个复杂计算。例如复杂的SQL、多次IO、多个依赖等

在缓存失效的瞬间,有大量线程来重建缓存,造成后端负载加大,甚至可能会让应用崩溃。要解决这个问题主要就是要避免大量线程同时重建缓存。我们可以利用互斥锁来解决,此方法只允许一个线程重建缓存,其他线程等待重建缓存的线程执行完,重新从缓存获取数据即可。

String get(String key) {// 从Redis中获取数据String value = redis.get(key);// 如果value为空,则开始重构缓存if (value == null) {String mutexKey = "mutex:key:" + key;if (redis.set(mutexKey, "1", "ex 180", "nx") {// 从数据源获取数据value = db.get(key);// 回写Redis,并设置过期时间redis.setex(key, timeout, value);} else {// 其他线程休息50毫秒重试Thread.sleep(50);return get(key);}  }return value;}

缓存与数据库双写不一致

在这里插入图片描述
在这里插入图片描述

解决方案

  • 1.对于并发几率很小的数据(如个人维度的订单数据、用户数据等),这种几乎不用考虑这个问题,很少会发生缓存不一致,可以给缓存数据加上过期时间,每隔一段时间触发读的主动更新即可
  • 2.就算并发很高,如果业务上能容忍短时间内的缓存数据不一致(如商品名称,商品分类菜单等),缓存加上过期时间依然可以解决大部分业务对于缓存的要求
  • 3.如果不能容忍缓存数据不一致,可以通过加分布式读写锁保证并发读写或写写的时候按顺序排好队,读读的时候相当于无锁
  • 4.也可以阿里开源的canal通过监听数据库的binlog日志即时地去修改缓存,但是引入了新地中间件,增加了系统地复杂度
    在这里插入图片描述

总结:

以上我们针对地都是读多写少的情况加入缓存提高性能,如果写多读多的情况又不能容忍缓存数据不一致,那就没必要加缓存了,可以直接操作数据库。当然,如果数据库扛不住压力,还可以把缓存作为数据读写的主存储,异步将数据同步到数据库,数据库只是作为数据的备份。

放入缓存的数据应该是对实时性、一致性要求不是很高的数据。切记不要为了用缓存,同时又要保证绝对的一致性做大量的过度设计和控制,增加系统复杂性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/543157.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++进阶:详解多态(多态、虚函数、抽象类以及虚函数原理详解)

C进阶&#xff1a;详解多态&#xff08;多态、虚函数、抽象类以及虚函数原理详解&#xff09; 结束了继承的介绍&#xff1a;C进阶&#xff1a;详细讲解继承 那紧接着的肯定就是多态啦 文章目录 1.多态的概念2.多态的定义和实现2.1多态的构成条件2.2虚函数2.2.1虚函数的概念2…

【bioinformation 7】药效团

&#x1f31e;欢迎来到AI医学的世界 &#x1f308;博客主页&#xff1a;卿云阁 &#x1f48c;欢迎关注&#x1f389;点赞&#x1f44d;收藏⭐️留言&#x1f4dd; &#x1f31f;本文由卿云阁原创&#xff01; &#x1f4c6;首发时间&#xff1a;&#x1f339;2024年3月16日&am…

实战:django项目环境搭建(pycharm,virtualBox)

django项目环境搭建 一.创建虚拟环境二.创建PyCharm远程连接 一.创建虚拟环境 需要用到的软件&#xff1a;PyCharm&#xff0c;VirtualBox虚拟机。 1.打开虚拟机终端&#xff0c;创建新的虚拟环境 Book。 2.在虚拟环境中创建新的文件夹 library&#xff0c;cd命令进入该文件…

【测试开发学习历程】在CentOS7上安装Docker

前言&#xff1a; 内容进入到Docker的时间虽然不是特别长&#xff0c; 但是呢在虚拟机上安装Docker的步骤还是不能少&#xff0c; 因为自己以后也是可能用到这个东西的。 注意&#xff0c;下文中提到的保存退出的命令是&#xff1a; :wq 如果要编辑文件的步骤&#xff0c;…

【日常记录】【CSS】css下划线动画

文章目录 1、效果2、思路3、代码 1、效果 2、思路 整体可以用 背景来做线&#xff1a;可以用 渐变 配合 background-size 、 background-position 、background-repeat正向动画&#xff1a;可以不断追加 background-size x 轴的大小来控制&#xff0c;当鼠标移入的时候&#x…

二、HarmonyOS 操作系统以及相关生态

前言 2019年8月9日&#xff0c;华为技术有限公司在华为开发者大会上正式发布了HarmonyOS 1.0&#xff0c;同时宣布该操作系统源代码开源。 2020年9月10日&#xff0c;HarmonyOs 2.0正式发布。与HarmonyOs 1.0版本相比&#xff0c;HarmonyOs 2.0在分布式软总线、分布式数据管理、…

单调队列优化DP

最大子序和 输入一个长度为 n 的整数序列&#xff0c;从中找出一段长度不超过 m的连续子序列&#xff0c;使得子序列中所有数的和最大。 注意&#xff1a; 子序列的长度至少是 1。 输入格式 第一行输入两个整数 n,m。 第二行输入 n 个数&#xff0c;代表长度为 n 的整数序…

Selenium教程:一文了解Selenium的元素查找

注&#xff1a;本文内容基于selenium 3.141.0 Selenium的元素查找指的是使用Selenium WebDriver库中提供的方法来定位和操作网页上的各种元素&#xff0c;如文本框、按钮、下拉框、链接等。通过元素查找&#xff0c;可以在自动化测试中模拟用户操作&#xff0c;比如输入文本、点…

C语言 内存函数

目录 前言 一、memcpy()函数 二、memmove()函数 三、memset函数 四、memcmp()函数 总结 前言 在C语言中内存是我们用来存储数据的地址&#xff0c;今天我们来讲一下C语言中常用的内存函数。 一、memcpy()函数 memcpy()函数与我们之前讲的strcpy()函数类似&#xff0c;只…

分布式调用与高并发处理(二)| Dubbo

文章目录 Dubbo概念_什么是分布式系统单机架构集群架构分布式架构单机、集群和分布式的区别 Dubbo概念_什么是RPCRPC两个作用&#xff1a;常见 RPC 技术和框架&#xff1a; Dubbo概念_简介Dubbo能做什么Dubbo支持的协议 Dubbo概念_核心组件注册中心Registry服务提供者Provider服…

AI - 决策树模型

&#x1f914;决策树算法 决策树的思想来源可以追溯到古希腊时期&#xff0c;当时的哲学家们就已经开始使用类似于决策树的图形来表示逻辑推理过程。然而&#xff0c;决策树作为一种科学的决策分析工具&#xff0c;其发展主要发生在20世纪。 在20世纪50年代&#xff0c;美国兰…

Xinstall助力web唤起iOS,打破平台壁垒,实现无缝跳转

在移动互联网时代&#xff0c;web与App之间的跳转已成为用户日常使用中不可或缺的一部分。然而&#xff0c;对于iOS系统的用户来说&#xff0c;web唤起App的过程往往充满了挑战和不便。这时&#xff0c;Xinstall作为一款专业的移动开发者服务工具&#xff0c;为开发者们提供了解…