十四、GPT

在GPT-1之前,传统的 NLP 模型往往使用大量的数据对有监督的模型进行任务相关的模型训练,但是这种有监督学习的任务存在两个缺点:预训练语言模型之GPT

  • 需要大量的标注数据,高质量的标注数据往往很难获得,因为在很多任务中,标签并不是唯一的或者实例标签并不存在明确的边界;
  • 根据一个任务训练的模型很难泛化到其它任务中,这个模型只能叫做“领域专家”而不是真正的理解了 NLP。

1 GPT-1

生成式预训练 Transfomer 模型(Generative Pre-Trained Transformer,GPT),将无监督学习应用到有监督模型的预训练目标。参考GPT的前世今生

GPT-1 语言模型结构上对 Transformer Decoder 进行了一些改动,原本的 Decoder 包含了两个 Multi-Head Attention 结构,GPT 只保留了 Mask Multi-Head Attention。

GPT-1 语言模型通过大量的无监督预训练(Unsupervised Pre-Training)(无监督是指不需要人工介入,不需要标注数据集的预训练),再通过少量有监督微调(Supervised Fine-Tuning)来修正其理解能力。监督训练和无监督训练是什么参考2.1部分

  • 在预训练阶段,GPT-1 使用无标注文本数据集(数据量约 5 GB 大小,模型自身参数 1.17 亿,Transfomer Layer 堆叠 12 层),通过最大化预训练数据集上的似然函数 log-likelihood 来训练模型参数。
  • 在微调阶段,GPT-1 将预训练模型的参数用于特定的自然语言处理任务。

2 GPT-2

GPT-2 的目标旨在训练一个泛化能力更强的词向量模型,它并没有对 GPT-1 的网络进行过多的结构的创新与设计,只是使用了更多的网络参数和更大的数据集。GPT语言模型详细介绍

GPT-2 模型主推零样本学习(Zero Shot Learning),使用了更多的数据(数据集增加 40 GB大小,模型自身参数高达15亿,Transfomer Layer 堆叠 48 层)进行预训练 Pre_Training,将有监督 Fine-Tuning 微调阶段变成了一个无监督的模型,同时增加了预训练多任务 MultiTask 模式(即主张不通过专门的标注数据集训练专用的AI,而是喂取了海量数据后,任意任务都可以完成)。

3 GPT-3

从理论上讲 GPT-3 也是支持 Fine-Tuning 的,但是 Fine-Tuning 需要利用海量的标注数据进行训练才能获得比较好的效果,但是这样也会造成对其它未训练过的任务上表现差,所以 GPT-3 并没有尝试 Fine-Tuning。 

零样本学习(Zero-Shot Learning)是一种能够在没有任何样本的情况下学习新类别的方法。通常情况下,模型只能识别它在训练集中见过的类别。但通过零样本学习,模型能够利用一些辅助信息来进行推理,并推广到从未见过的类别上。这些辅助信息可以是关于类别的语义描述、属性或其他先验知识。 Zero-Shot, One-Shot 和 Few-Shot Learning概念介绍

一次样本学习(One-Shot Learning)是一种只需要一个样本就能学习新类别的方法。这种方法试图通过学习样本之间的相似性来进行分类。例如,当我们只有一张狮子的照片时,一次样本学习可以帮助我们将新的狮子图像正确分类。

少样本学习(Few-Shot Learning)是介于零样本学习和一次样本学习之间的方法。它允许模型在有限数量的示例下学习新的类别。相比于零样本学习,少样本学习提供了更多的训练数据,但仍然相对较少。这使得模型能够从少量示例中学习新的类别,并在面对新的输入时进行准确分类。 

元学习(Meta Learning)的核心思想在于通过少量的数据寻找一个合适的初始化范围,使得模型能够在有限的数据集上快速拟合,并获得不错的效果(对于一个少样本的任务来说,模型的初始化值非常重要,从一个好的初始化值作为起点,模型能够尽快收敛,使得到的结果非常快的逼近全局最优解)。

GPT-3 模型使用更多的高质量的数据(数据集增加 45 TB大小,模型自身参数高达 1750 亿,Transformer Layer 也从48层提升到 96 层),使用 MAML(Model Agnostic Meta Learning)算法学习一组 Meta-Initialization,能够快速应用到其它任务中。

4 ChatGPT

ChatGPT 基于 GPT-3.5 架构的有监督精调 (Supervised Fine-Tuning, SFT),训练一个奖励模型(Reward Model,RM),使用来自人类反馈的强化学习(Reinforcement Learning from Human Feedback, RLHF)进行优化训练,通过近端策略优化(Proximal Policy Optimization)算法进行微调。参考ChatGPT原理详解

该方法包括以下三个步骤: 一文读懂ChatGPT中的强化学习

  • 第一步:带监督的微调,预训练语言模型对由标注人员管理的相对较少的演示数据进行微调,以学习监督策略(SFT模型),根据选定的提示列表生成输出,这表示基线模型;
  • 第二步:“模仿人类偏好” ,要求标注人员对相对较多的 SFT 模型输出进行投票,创建一个由对比数据组成的新数据集。在该数据集上训练一个新的奖励模型(RM);
  • 第三步:近端策略优化(PPO),对奖励模型进一步微调以改进 SFT 模型。这一步的结果就是所谓的策略模型。
  • 步骤 1 只进行一次,而步骤 2 和步骤 3 可以连续迭代,在当前的最佳策略模型上收集更多的比较数据,训练出一个新的奖励模型,然后在此基础上再训练出一个新的策略。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/544993.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mac激活pycharm,python环境安装和包安装问题

1.PyCharm到官网下载就行 地址:Other Versions - PyCharm (jetbrains.com) 2.MacOS 下载python环境,地址: Python Releases for macOS | Python.org 3.PyCharm环境配置: 4. 如果包下载不下来可以换个源试试 pip install py…

一体成型PFA尖头镊子高纯特氟龙材质镊子适用半导体新材料

PFA镊子用于夹取小型片状、薄状、块状样品,广泛应用在半导体、新材料、新能源、原子能、石油化工、无线电、电力机械等行业。 具有耐高低温性(可使用温度-200℃~+260℃)、耐腐蚀、表面不粘性等特点,用于苛…

java的前缀和算法

前缀和的概念 对于一个给定的数组A,它的前缀和数组S中S[i]表示从第1个元素到第i个元素的总和,用公式表示为: SiA1A2A3...An 前缀和的作用 在O(1)的时间求出数组任意区间的区间和。 降低求解的复杂度 算法模板 int n10; int [] arrnew in…

python之自动化(django)

1、安装 我用的是pip install Django 在命令行中安装 然后django-admin startproject autotext(在命令行中) 这句话是创建一个django 项目 然后切换到你所创建项目的目录下 输入: python manage.py runserver 当你出现以下错误时 You…

特殊文本文件、日志技术

特殊文件 为什么要用这些特殊文件? 存储多个用户的:用户名、密码 特殊文件:Properties属性文件 特点: 都只能是键值对键不能重复文件后缀一般是.properties结尾的 作用:存储一些有关系的键值对数据 Properties 是一个Map集合(键…

详解MySql索引

目录 一 、概念 二、使用场景 三、索引使用 四、索引存在问题 五、命中索引问题 六、索引执行原理 一 、概念 索引是一种特殊的文件,包含着对数据表里所有记录的引用指针。暂时可以理解成C语言的指针,文章后面详解 二、使用场景 数据量较大,且…

苹果Vision Pro即将在中日韩等九国开卖 | 百能云芯

苹果公司近期透露,首款混合实境(MR)头盔「Vision Pro」即将在今年晚些时候推向更多国家销售。虽然苹果尚未公布具体的销售细节,但根据最新的外媒报道,这款高科技产品可能即将在中国、日本、韩国等九个国家开卖&#xf…

Rust写一个wasm入门并在rspack和vite项目中使用(一)

rust打包wasm文档 文档地址 安装cargo-generate cargo install cargo-generate 安装过程中有问题的话手动安装cargo-generate下载地址 根据自己的系统下载压缩包,然后解压到用户/.cargo/bind目录下,将解压后的文件放到该目录下即可。 创建wasm项目 …

【Miniconda】一文了解conda虚拟环境的作用

【Miniconda】一文了解conda虚拟环境的作用 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅和支持~ &am…

VMwareWorkstation16与Ubuntu 22.04.6 LTS下载与安装

一、准备工作 VMware Workstation Pro 16官网下载: https://customerconnect.vmware.com/cn/downloads/info/slug/desktop_end_user_computing/vmware_workstation_pro/16_0。下载需要账号登录。 二、安装 双击exe文件稍等一会会弹出安装程序,如图 这…

基于Linux内核的socket编程(TCP)的C语言示例

原文地址&#xff1a;https://www.geeksforgeeks.org/socket-programming-cc/ 服务端&#xff1a; #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/socket.h> #include <unistd.h>#…

盒子IM开源仿微信聊天程序源码,可以商用

安装教程 1.安装运行环境 安装node:v14.16.0安装jdk:1.8安装maven:3.6.3安装mysql:5.7,密码分别为root/root,运行sql脚本(脚本在im-platfrom的resources/db目录)安装redis:5.0安装minio&#xff0c;命令端口使用9001&#xff0c;并创建一个名为”box-im”的bucket&#xff0c…