主干网络篇 | YOLOv8更换主干网络之ShuffleNetV2

前言:Hello大家好,我是小哥谈。ShuffleNetV2是一种轻量级的神经网络架构,用于图像分类和目标检测任务。它是ShuffleNet的改进版本,旨在提高模型的性能和效率。ShuffleNetV2相比于之前的版本,在保持模型轻量化的同时,提高了模型的准确性和性能。它在计算资源有限的设备上具有较好的应用潜力!~🌈  

     目录

🚀1. 基础概念

🚀2.网络结构

🚀3.添加步骤

🚀4.改进方法

🍀🍀步骤1:block.py文件修改

🍀🍀步骤2:__init__.py文件修改

🍀🍀步骤3:tasks.py文件修改

🍀🍀步骤4:创建自定义yaml文件

🍀🍀步骤5:新建train.py文件

🍀🍀步骤6:模型训练测试

🚀1. 基础概念

ShuffleNetV2是一种轻量级的神经网络架构,用于图像分类和目标检测任务。它是ShuffleNet的改进版本,旨在提高模型的性能和效率。

ShuffleNetV2的主要特点包括:

  1. 分组卷积:通过将输入通道分成多个组,并在组内进行卷积操作,减少了计算量和参数数量。
  2. 逐点卷积:使用1x1的卷积核进行逐点卷积,用于调整通道数和特征图的维度。
  3. 通道重排:通过将输入特征图按通道进行重排,实现信息的混洗和交互,增强了特征的表达能力。
  4. 瓶颈结构:采用瓶颈结构,即先降维再升维,减少了计算量和参数数量。
  5. 网络设计:ShuffleNet V2通过堆叠多个ShuffleNet单元来构建整个网络,可以根据任务的需求进行不同层数和宽度的配置。

ShuffleNetV2相比于之前的版本,在保持模型轻量化的同时,提高了模型的准确性和性能。它在计算资源有限的设备上具有较好的应用潜力。

shuffleNetV2这篇论文比较硬核,提出了不少新的思想,推荐大家可以看看论文原文。主要思想包括:

  • 模型的计算复杂度不能只看FLOPs,还需要参考一些其他的指标
  • 作者提出了4条如何设计高效网络的准则
  • 基于该准则提出了新的block设置

FLOPS网上有两种:FLOPS和 FLOPs

FLOPS:全大写,指每秒浮点运算次数,可以理解为计算的速度,是衡量硬件性能的一个指标 (硬件)
FLOPs:s小写,指浮点运算数,理解为计算量,可以用来衡量算法/模型的复杂度,(模型)在论文中常用GFLOPs(1 GFLOPs = 10^9FLOPs)

 ShuffleNetV2网络结构:

 原理图:

其中,a、b为ShuffleNetV1原理图,c、d为ShuffleNetV2原理图。

论文题目:《ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design》

论文地址:  https://arxiv.org/pdf/1807.11164.pdf

代码实现:  GitHub - megvii-model/ShuffleNet-Series 


🚀2.网络结构

本文的改进是基于YOLOv8,关于其网络结构具体如下图所示:

YOLOv8官方仓库地址:

GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite

针对本文的改进,作者将所使用的含有预训练权重文件的YOLOv8完整源码进行了上传,大家可在我的“资源”中自行下载。  


🚀3.添加步骤

针对本文的改进,具体步骤如下所示:👇

步骤1:block.py文件修改

步骤2:__init__.py文件修改

步骤3:tasks.py文件修改

步骤4:创建自定义yaml文件

步骤5:新建train.py文件

步骤6:模型训练测试


🚀4.改进方法

🍀🍀步骤1:block.py文件修改

在源码中找到block.py文件,具体位置是ultralytics/nn/modules/block.py,然后将ShuffleNetV2模块代码添加到block.py文件末尾位置。

ShuffleNetV2模块代码:

# ShuffleNetv2核心代码
# By CSDN 小哥谈
import torch
import torch.nn as nndef channel_shuffle(x, groups):batchsize, num_channels, height, width = x.data.size()channels_per_group = num_channels // groupsx = x.view(batchsize, groups, channels_per_group, height, width)x = torch.transpose(x, 1, 2).contiguous()x = x.view(batchsize, -1, height, width)return xclass CBRM(nn.Module):  # Conv BN ReLU Maxpool2ddef __init__(self, c1, c2):super(CBRM, self).__init__()self.conv = nn.Sequential(nn.Conv2d(c1, c2, kernel_size=3, stride=2, padding=1, bias=False),nn.BatchNorm2d(c2),nn.ReLU(inplace=True),)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)def forward(self, x):return self.maxpool(self.conv(x))class Shuffle_Block(nn.Module):def __init__(self, ch_in, ch_out, stride):super(Shuffle_Block, self).__init__()if not (1 <= stride <= 2):raise ValueError('illegal stride value')self.stride = stridebranch_features = ch_out // 2assert (self.stride != 1) or (ch_in == branch_features << 1)if self.stride > 1:self.branch1 = nn.Sequential(self.depthwise_conv(ch_in, ch_in, kernel_size=3, stride=self.stride, padding=1),nn.BatchNorm2d(ch_in),nn.Conv2d(ch_in, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True),)self.branch2 = nn.Sequential(nn.Conv2d(ch_in if (self.stride > 1) else branch_features,branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True),self.depthwise_conv(branch_features, branch_features, kernel_size=3, stride=self.stride, padding=1),nn.BatchNorm2d(branch_features),nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),nn.BatchNorm2d(branch_features),nn.ReLU(inplace=True),)@staticmethoddef depthwise_conv(i, o, kernel_size, stride=1, padding=0, bias=False):return nn.Conv2d(i, o, kernel_size, stride, padding, bias=bias, groups=i)def forward(self, x):if self.stride == 1:x1, x2 = x.chunk(2, dim=1)out = torch.cat((x1, self.branch2(x2)), dim=1)else:out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)out = channel_shuffle(out, 2)return out

再然后,在block.py文件最上方下图所示位置加入CBRMShuffle_Block

🍀🍀步骤2:__init__.py文件修改

在源码中找到__init__.py文件,具体位置是ultralytics/nn/modules/__init__.py

修改1:加入CBRMShuffle_Block,具体如下图所示:

修改2:加入CBRMShuffle_Block,具体如下图所示:

🍀🍀步骤3:tasks.py文件修改

在源码中找到tasks.py文件,具体位置是ultralytics/nn/tasks.py

修改1:在下图所示位置导入类名CBRMShuffle_Block

修改2:找到parse_model函数(736行左右),在下图中所示位置添加如下代码。

 # -------ShuffleNetv2------------elif m in [CBRM, Shuffle_Block]:c1, c2 = ch[f], args[0]if c2 != nc:c2 = make_divisible(min(c2, max_channels) * width, 8)args = [c1, c2, *args[1:]]# --------------------------------

具体添加位置如下图所示:

🍀🍀步骤4:创建自定义yaml文件

在源码ultralytics/cfg/models/v8目录下创建yaml文件,并命名为:yolov8_ShuffleNetV2.yaml。具体如下图所示:

yolov8_ShuffleNetV2.yaml文件完整代码如下所示:

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [ -1, 1, CBRM, [ 32 ] ] # 0-P2/4- [ -1, 1, Shuffle_Block, [ 128, 2 ] ]  # 1-P3/8- [ -1, 3, Shuffle_Block, [ 128, 1 ] ]  # 2- [ -1, 1, Shuffle_Block, [ 256, 2 ] ]  # 3-P4/16- [ -1, 7, Shuffle_Block, [ 256, 1 ] ]  # 4- [ -1, 1, Shuffle_Block, [ 512, 2 ] ]  # 5-P5/32- [ -1, 3, Shuffle_Block, [ 512, 1 ] ]  # 6# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 3], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 9- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 2], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 12 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 15 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 6], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 18 (P5/32-large)- [[12, 15, 18], 1, Detect, [nc]]  # Detect(P3, P4, P5)
🍀🍀步骤5:新建train.py文件

在源码根目录下新建train.py文件,文件完整代码如下所示:

from ultralytics import YOLO# Load a model
model = YOLO(r'C:\Users\Lenovo\PycharmProjects\ultralytics-main\ultralytics\cfg\models\v8\yolov8_ShuffleNetV2.yaml')  # build a new model from YAML
model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)
model = YOLO(r'C:\Users\Lenovo\PycharmProjects\ultralytics-main\ultralytics\cfg\models\v8\yolov8_ShuffleNetV2.yaml').load('yolov8n.pt')  # build from YAML and transfer weights# Train the model
model.train(data=r'C:\Users\Lenovo\PycharmProjects\ultralytics-main\ultralytics\cfg\datasets\helmet.yaml', epochs=100, imgsz=640)

注意:一定要用绝对路径,以防发生报错。

🍀🍀步骤6:模型训练测试

train.py文件,点击“运行”,在作者自制的安全帽佩戴检测数据集上,模型可以正常训练。

模型训练过程: 

模型训练结果: 

 关于本次改进所使用的安全帽佩戴检测数据集,已上传至我的“资源”中,大家可免费下载。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/545107.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

什么是CRM系统?全面解析,学会利用CRM提升业务效率

在客户心目中&#xff0c;200家CRM企业可能会有200种CRM管理系统&#xff0c;很多客户接触客户经理的第一句话都是&#xff1a;“你家是什么CRM&#xff1f;”。CRM系统是什么&#xff1f;很多技术商、企业管理者自己往往都没有概念&#xff0c;我们通过一文全面解析。简单来说…

我打算修一段时间仙,望周知

1、大科学家牛顿也修过仙&#xff0c;虽然修的是西方的仙&#xff1b;我们东方人不信那个邪&#xff0c;有自己优秀的传统文化&#xff0c;我只修东方的仙&#xff1b;另外&#xff0c;作为普通凡人我成就和智慧都无法望牛顿老人家项背的普通人&#xff0c;即使现在暂时“修仙”…

记录对NSIS的一些微调 实现Electron安装包美化

利洽科技-nsNiuniuSkinUI - NSIS 实现了electron 的安装包美化&#xff0c;免费&#xff0c;便捷。 下面我整理了一些关于它的微调&#xff0c;使其安装卸载更加简单快捷。 1. 默认展示安装路径部分 &#xff08;1&#xff09;将moreconfiginfo标签visible 设置为 true&#…

SpringCloud-深度理解ElasticSearch

一、Elasticsearch概述 1、Elasticsearch介绍 Elasticsearch&#xff08;简称ES&#xff09;是一个开源的分布式搜索和分析引擎&#xff0c;构建在Apache Lucene基础上。它提供了一个强大而灵活的工具&#xff0c;用于全文搜索、结构化搜索、分析以及数据可视化。ES最初设计用…

探索设计模式的魅力:探索发布-订阅模式的深度奥秘-实现高效、解耦的系统通信

​&#x1f308; 个人主页&#xff1a;danci_ &#x1f525; 系列专栏&#xff1a;《设计模式》 &#x1f4aa;&#x1f3fb; 制定明确可量化的目标&#xff0c;并坚持默默的做事。 探索发布-订阅模式的深度奥秘&#xff1a;实现高效、解耦的系统通信 文章目录 一、案例场景&am…

Parade Series - Web Streamer Low Latency

Parade Series - FFMPEG (Stable X64) 延时测试秒表计时器 ini/config.ini [system] homeserver storestore\nvr.db versionV20240312001 verbosefalse [monitor] listrtsp00,rtsp01,rtsp02 timeout30000 [rtsp00] typelocal deviceSurface Camera Front schemartsp ip127…

数据可视化-ECharts Html项目实战(1)

在之前的文章中&#xff0c;我们学习了如何安装Visual Studio Code并下载插件&#xff0c;想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢。 安装 Visual Studio…

C++中的friend关键字

C中的friend关键字允许其他类或函数访问私有和受保护成员。使用friend是一种破坏封装的做法&#xff0c;但在某些情况下&#xff0c;它提供了必要的灵活性。 friend函数 定义&#xff1a;允许一个普通函数访问类的私有&#xff08;private&#xff09;和受保护&#xff08;prot…

关于选中,取消选中,和选中同分类下的其他

常见于商城购买页如图所示&#xff1a; 完整代码如下&#xff1a; css部分&#xff1a; :class"[seleIndex[index] index_one ? new_style : ]" .new_style{background-color: #e9445a !important;color: #FFFFFF; }js部分 const selectdata reactive({select:[…

监控系统prometheus+grafana+发送告警信息

1、基础环境准备两台或更多的主机 2、关闭selinux vi /etc/selinux/config&#xff0c;修改SELINUX的值为disabled 3、关闭防火墙 systemctl disable firewalld systemctl stop firewalld 4、prometheus官网下载 https://prometheus.io/download/ 5、grafana官网下载 https…

【网络原理】TCP 协议中比较重要的一些特性(三)

目录 1、拥塞控制 2、延时应答 3、捎带应答 4、面向字节流 5、异常情况处理 5.1、其中一方出现了进程崩溃 5.2、其中一方出现关机&#xff08;正常流程的关机&#xff09; 5.3、其中一方出现断电&#xff08;直接拔电源&#xff0c;也是关机&#xff0c;更突然的关机&am…

Avalonia学习1:下载通用皮肤SukiUI,并在windows上启动成功

目录 1、引言 2、碰到的问题 1、下载下拉VS2022老版本的用不了。 2、升级后&#xff0c;发现没有装wsl&#xff0c;导致启动不了&#xff0c;但wsl又由于国内的关系安装不了&#xff0c;怎么办呢&#xff0c; 1、引言 最近在想有没有什么可以开发在Linux下运行…