基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、讲解


💥1 概述

由于能源的日益匮乏,电力需求的不断增长等,配电网中分布式能源渗透率不断提高,且逐渐向主动配电网方向发展。此外,需求响应(demand response,DR)的加入对配电网的规划运行也带来了新的因素[1-2]。因此,如何综合考虑分布式发电 (distributed generation,DG)和负荷,甚至需求响应负荷的关系,从而制定有效的协同规划方案,来应对高渗透分布式电源接入给主动配电网带来的诸多问题,具有较大的意义和价值。国内外学者对传统配电网规划方案作了大量的研究工作,如 DG 规划[3-4]、网架规划[5-6]、无功补偿规划[7]等。文献[3-7]均为单一规划,然而在分布式能源大力提倡和发展环境下,配电网公司应综合考虑 DG 和用户响应等关联因素,制定协同规划方案。当前配电网协同规划领域研究主要集中在变 电站和线路协同规划[8]及变电站、线路和电容的协同规划[9]等,其设计目标主要集中于减少传统配电网规划的设备投资,进而满足负荷的长。

随着分布式电源(distributed generation,DG)的渗透率不断增长,其出力的不确定性限制了配电网的消纳能力[1] 。安装储能设备等传统的解决措施又受到规划成本、设备灵活性等诸多方面的制约。柔性负荷具有成本低、灵活度高的特点,可代替储能设备实现一定的辅助功能,其与实际储能被统称为广义储能系统[2⁃3] ,是现代配电网规划中的重要部分。

粒子群优化算法(particle swarm optimization,PSO)是一种利用微粒模拟飞鸟捕食行为,不断更新粒子位置和速度,寻找目标最优解的优化算法。该算法因收敛速度快,搜索能力强的特点而受到广泛应用。本文采用惯性权重因子和学习因子调整的改进粒子群算法,进一步优化粒子搜索能力,提高运算收敛性。改进粒子群算法求解双层优化模型步骤如下:

1)输入配电网络参数,采用 K-均值多场景分析法对风光荷年历史数据进行处理,将风光荷随机特性用不同季节不同气候下多个典型日确定化描述,得到各典型日场景数据和概率;

2)初始化粒子位置和速度,即规划层灵活性资源的位置和容量,作为运行层的输入;

然后上下两层规划如下:

📚2 运行结果

链接:https://pan.baidu.com/s/12XO32tKGOLIlswp2_M4ktw 
提取码:lm6b 
--来自百度网盘超级会员V3的分享

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]高红均,刘俊勇.考虑不同类型DG和负荷建模的主动配电网协同规划[J].中国电机工程学报,2016,36(18):4911-4922+5115.DOI:10.13334/j.0258-8013.pcsee.152440.

[2]刘自发,于普洋,李颉雨.计及运行特性的配电网分布式电源与广义储能规划[J].电力自动化设备,2023,43(03):72-79.DOI:10.16081/j.epae.202208029.

[3]任智君,郭红霞,杨苹等.含高比例可再生能源配电网灵活资源双层优化配置[J].太阳能学报,2021,42(09):33-38.DOI:10.19912/j.0254-0096.tynxb.2019-0783.

🌈4 Matlab代码、数据、讲解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/55058.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Django实现音乐网站 ⑹

使用Python Django框架制作一个音乐网站, 本篇主要是在添加编辑过程中对后台歌手功能优化及表模型名称修改、模型继承内容。 目录 表模型名称修改 模型继承 创建抽象基类 其他模型继承 更新表结构 歌手新增、编辑优化 表字段名称修改 隐藏单曲数和专辑数 姓…

DataWhale 机器学习夏令营第二期——AI量化模型预测挑战赛 学习记录

DataWhale 机器学习夏令营第二期 学习记录一 (2023.08.06)1. 问题建模1.1 赛事数据数据集情况数据中缺失值类别和数值特征的基本分布 1.2 评价指标中间价的计算方式价格移动方向说明 1.3 线下验证 DataWhale 机器学习夏令营第二期 ——AI量化模型预测挑战赛 已跑通baseline&…

【统计学精要】:使用 Python 实现的统计检验— 1/10

一、介绍 欢迎来到“掌握 Python 统计测试:综合指南”,它将介绍本手册中您需要熟悉使用 Python 的所有基本统计测试和分析方法。本文将为您提供统计测试及其应用的全面介绍,无论您是新手还是经验丰富的数据科学家。 使用来自现实世界的实际示…

装修小程序,开启装修公司智能化服务的新时代

随着数字化时代的来临,装修小程序成为提升服务质量和效率的关键工具。装修小程序旨在为装修公司提供数字化赋能、提高客户满意度的智慧装修平台。通过装修小程序,装修公司能够与客户进行在线沟通、展示设计方案、提高服务满意度等操作。 装修小程序的好处…

snap xxx has “install-snap“ change in progress

error description * 系重复安装,进程冲突 solution 展示snap的改变 然后sudo snap abort 22即可终止该进程 之后重新运行install command~~ PS: ubuntu有时候加载不出来,执行resolvectl flush-caches,清除dns缓存…

uniapp发布插件显示components/xxx文件没找到,插件格式不正确

uniapp发布插件显示components/xxx文件没找到,插件格式不正确 将插件文件这样一起选中,然后右键压缩成zip文件,而不是外层文件压缩

K8S 部署 RocketMQ

文章目录 添加模板部署本地访问 集群使用 kubesphere 作为工具 添加模板 添加 helm 模板 helm repo add rocketmq-repo https://helm-charts.itboon.top/rocketmq helm repo update rocketmq-repo编写 value.yaml 文件 配置主从节点的个数,例子为单节点 broker:…

机器人状态估计:robot_localization 功能包使用方法

机器人状态估计:robot_localization 功能包基本使用 前言功能包简介基本使用数据输入与数据输出坐标系设置性能参数调试 前言 移动机器人的状态估计需要用到很多传感器,因为对单一的传感器来讲,都存在各自的优缺点,所以需要一种多…

如何将 dubbo filter 拦截器原理运用到日志拦截器中?

业务背景 我们希望可以在使用日志拦截器时,定义属于自己的拦截器方法。 实现的方式有很多种,我们分别来看一下。 拓展阅读 java 注解结合 spring aop 实现自动输出日志 java 注解结合 spring aop 实现日志traceId唯一标识 java 注解结合 spring ao…

GO学习之 函数(Function)

GO系列 1、GO学习之Hello World 2、GO学习之入门语法 3、GO学习之切片操作 4、GO学习之 Map 操作 5、GO学习之 结构体 操作 6、GO学习之 通道(Channel) 7、GO学习之 多线程(goroutine) 8、GO学习之 函数(Function) 9、GO学习之 接口(Interface) 文章目录 GO系列前言一、什么是…

[OGeek2019 Final]OVM——详细入门VM pwn

是一个入门级别的题目,但是花了非常久的时间整理 刚拿到题目进行反编译的时候是非常懵逼的,因为我确实不知道这是干啥的 查了下资料 原理大概如下 VMpwn 程序通常都是模拟一套虚拟机,对用户输入的opcode进行解析,模拟程序的执行&…

React Dva项目 Model中编写与调用异步函数

上文 React Dva项目中模仿网络请求数据方法 中,我们用项目方法模拟了后端请求的数据 那么 今天我们就在models中尝试去使用一下这种异步获取数据的方法 之前 我们在文章 React Dva项目创建Model,并演示数据管理与函数调用 中已经接触过Model了 也可以理解为 它就是 …