图像处理库(Opencv, Matplotlib, PIL)以及三者之间的转换

文章目录

  • 1. Opencv
  • 2. Matplotlib
  • 3. PIL
  • 4. 三者的区别和相互转换
  • 5. Torchvision 中的相关转换库
    • 5.1 ToPILImage([mode])
    • 5.2 ToTensor
    • 5.3 PILToTensor

1. Opencv

opencv的基本图像类型可以和numpy数组相互转化,因此可以直接调用torch.from_numpy(img) 将图像转换成tensor

  • 读取: img=cv2.imread(path)
    OpenCV读取图像后返回的是一个代表图像的numpy.ndarray,采用的格式是(H,W,C),通道顺序为BGR, 取值范围[0,255], dtype=uint8
import cv2
def read_img_cv(path):img_cv=cv2.imread(path)return img_cv
  • 显示: cv2.imshow(name,img)
import cv2
def show_img_cv(img_cv):cv2.imshow("Image", img_cv)cv2.waitKey(0)  # 暂停显示图片,数字0代表按键后 0 ms执行
  • 保存: cv2.imwrite(path, img)
import cv2
def save_img_cv(img_cv,path):cv2.imwrite(path, img_cv)  # 保存图片

2. Matplotlib

matplotlib 是python仿照matlab绘图开发的图像绘制库。使用matplotlib绘图时,可以读取tesnornumpy数据类型。

  • 读取: img=mpimg.imread(path)

如果是灰度图:返回(H,W)形状的数组
如果是RGB图像,返回(H, W, 3) 形状的数组,图片通道顺序为RGB
如果是RGBA图像,返回(H.W, 4) 形状的数组, 图片通道顺序为RGBA

此外,PNG 图像以浮点数组 (0-1) dtype=float32的形式返回,所有其他格式都作为 int 型数组dtype=uint8返回,位深由具体图像决定。

import matplotlib.image as mpimg
def read_img_mat(path):img_mat=mpimg.imread(path)return img_mat
  • 显示: plt.imshow(img) plt.show()
  1. 显示彩色图
import matplotlib.pyplot as plt
# 如果在jupyter notebook中显示,需要添加如下一行代码
%matplotlib inlinedef show_img_mat(img_mat):plt.imshow(img_mat)plt.axis('off')plt.show()
  1. 显示灰度图
    matplotlib显示图像,默认以三通道显示图像,我们需要在plt.imshow()里添加参数gray
def show_img_gray(img_gray):plt.imshow(img_gray,cmap='gray')plt.axis('off')plt.show()
  1. 显示Image类型图片
def show_img_pil(img_pil):plt.imshow(img_pil)plt.axis('off')plt.show()
  • 保存: plt.imsave(name,img)
def save_img_pil(img_pil,name):plt.imsave(name,img_pil)

3. PIL

PIL是python对于图像处理的基本库。
图像的模式如下图,比如1: 二值图,L灰度图,P: 8位彩色图,RGB:24位彩色图(每个通道8位)例如jpg图像,RGBA : 相比RGB多了alpha通道(不透明度)例如png图像
可以使用img.convert(mode) 转换模式。
在这里插入图片描述

  • 读取: img=Image.open(path)
    读到的是一个PIL.xxxImageFIie的类型。
import PIL
from PIL import Image
def read_img_pil(path):img_pil=Image.open(path) # PIL Image 类型return img_pil
  • 显示:image.show()
def show_img_pil(img_pil):img_pil.show()
  • 保存: image.save(path)
def save_img_pil(img_pil,path):img_pil.save(path)

4. 三者的区别和相互转换


三者的区别

  • Opencv 的数据类型是Numpy数组,通道顺序为BGR
  • Matplotlib 的数据类型是Numpy数组, 通道顺序是RGB
  • PIL 的数据类型是PIL.Image类,通道顺序是RGB

三种图像处理库相互转换

  • OpencvMatplotlib之间的相互转换
# cv->mat
def cv2mat(img_cv):img_mat=cv2.cvtColor(img_cv,cv2.COLOR_BGR2RGB) # 将颜色通道从BGR改变成RGB# 另一种等价写法# img_mat=img_cv[:,:,::-1]return img_matdef mat2cv(img_mat): # 将颜色通道从RGB改变成BGRimg_cv=img_mat[:,:,::-1]return img_cv
  • MatplotlibPIL之间的相互转换
    np.asarry(img) img->array
    Image.fromarray(array) array->img
# mat->PIL
#方法1:三通道的转换
def mat2PIL_RGB(img_mat):img_pil=Image.fromarray(img_mat.astype('uint8'))# unit8 是无符号的8位整形,用astype [0,255]截断处理# 另外一种写法# img_pil= Image.fromarray(np.unit8(img_mat))return img_pil # 方法2: 四通道的转换
def mat2PIL_RGBA(img_mat):img_pil=Image.fromarray(img_mat.astype('uint8')).convert('RGB')return img_pil# 方法三:使用torchvision的库函数
from torchvision import transforms
def mat2PIL_trans(img_mat):trans=transformers.ToPILImage()img_pil=trans(img_mat)return img_pil'''PIL->mat'''def PIL2mat(img_pil):img_mat=np.array(img_pil) # 深拷贝# 如果是jpg格式,通道顺序是RGB, (H,W,3)# 如果是png格式,通道顺序是RGBA, (H,W,4)# 返回的类型均是`numpy.ndarray`, `dtype=unit8`, 取值返回[0,255]# 或者也可以采用浅拷贝# img_mat=np.asarray(img_pil)return img_mat'''区间变换'''
# [0,255]->[0,1] 
def PIL2mat_norm(img_pil):img_mat=np.asarray(img_pil)/255.0return img_mat
# [0,1]->[0,255]
def mat_255(img_mat):img_mat=(np.maximum(img_mat, 0) / img_mat.max()) * 255.0 img_mat=np.unit8(img_mat)
  • OpencvPIL之间的相互转换
# cv->PIL
#方法1:三通道的转换
def cv2PIL_RGB(img_cv):img_rgb = img_cv[:,:,::-1] # OpenCV 的通道顺序为 BGR, 转换成RGB# nparray img_pil= Image.fromarray(np.uint8(img_rgb))return img_pil # 方法2: 四通道的转换
def cv2PIL_RGBA(img_cv):img_rgb = img_cv[:,:,::-1]img_pil=Image.fromarray(img_rgb.astype('uint8')).convert('RGB')return img_pil# 方法三:使用torchvision的库函数
from torchvision import transforms
def cv2PIL_trans(img_cv):img_rgb = img_cv[:,:,::-1]trans=transformers.ToPILImage()img_pil=trans(img_rgb)return img_pil# PIL->cv
def PIL2cv(img_pil):img_ary=np.array(img_pil) # 深拷贝,通道顺序是 RGB, (H,W,C)# 或者也可以采用深拷贝# img_ary=np.asarray(img_pil)img_cv=img_ary[:,:,-1]return img_cv

三种格式和Tensor之间的相互转换

  • numpy格式转成Tensor
import torch
def nparray2tensor(npary):ts=torch.from_numpy(npary)# 如果需要修改成浮点类型# ts=torch.from_numpy(npary).float()return ts
  • PIL和numpy格式转成Tensor
    可以利用torchvision 中transforms.ToTensor()
    该函数可以将PIL 中的Image 或者 numpy.ndarray(dtype=unit8): 大小 (H,W,C) 、范围[0,255] 转化成torch.FloatTensor: 大小(C,H,W)、范围[0.0,1.0]
from torchvision import transforms
# img_pil: Image
trans=transforms.ToTensor() 
tens=trans(img_pil) # (C,H,W) [0.0,1,0]
# tens_hwc=tens.transpose((1,2,0))

5. Torchvision 中的相关转换库

5.1 ToPILImage([mode])

CLASS
torchvision.transforms.ToPILImage(mode=None)
  • 功能

    将tensor或ndarray转换为PIL图像——这不会缩放值。这个转换不支持torchscript。

    转换形状为C x H x Wtorch.*Tensor或形状为H x W x Cnumpy ndarrayPIL图像,同时保留值范围。

  • 参数

    • mode(PIL.Image mode) 输入数据的颜色空间和像素深度(可选)。mode为None时(默认)对输入数据有如下假设 :
      • 输入为4通道时,假设模式为RGBA。
      • 如果输入为3通道,则假设为RGB模式。
      • 输入为2路时,假设为LA模式。
      • 如果输入有1个通道,模式由数据类型(即int、float、short)确定。

5.2 ToTensor

CLASS
torchvision.transforms.ToTensor
  • 功能:

    将PIL图像或ndarray转换为tensor,并相应地缩放。这个转换不支持torchscript。

    转换PIL Image或在[0,255]区间内的numpy.ndarray (H x W x C)[0.0,1.0]区间内的torch.FloatTensor (C x H x W)。其中PIL Image属于其中一种模式(L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1);如果numpy.Ndarray的dtype = np.uint8
    在其他情况下,张量在不缩放的情况下返回。

5.3 PILToTensor

CLASS
torchvision.transforms.PILToTensor
  • 功能

    将PIL图像转换为相同类型的张量-这不会缩放值。这个转换不支持torchscript。

    PIL Image (H x W x C)转换为形状(C x H x W)的张量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/55165.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用Exe4j将jar文件打包成可执行.exe程序[详细]

1. 下载Exe4j EXE4j破解版下载http://www.sd173.com/soft/10717.html 不破解的话,运行打包的exe会有exe4j的欢迎语。关于Exe4j的破解教程可自行百度搜索。 2. 准备jar包 打包前首先确保jar能运行。可以将所有的以来包放在一个目录下,如lib目录&#…

TOPSIS法

TOPSIS法 文章目录 TOPSIS法TOPSIS法的三点解释增加指标个数1.统一指标类型极小型指标转换为极大型指标的公式中间型指标转换为极大型指标的公式区间型指标转换为极大型指标的公式 2.正向化矩阵标准化3.计算得分并归一化类比只有一个指标计算得分 TOPSIS法代码统一指标类型判断…

f12 CSS网页调试_css样式被划了黑线怎么办

我的问题是这样的 class加上去了,但是样式不生效,此时可能是样式被其他样式覆盖了, 解决方案就是 给颜色后边添加一个!important

软工导论知识框架(四)结构化系统的实现

一.编码 编码和测试统称为系统实现。 1.目的:把模块的过程性描述翻译为用选定的程序设计语言书写的源程序(源代码)。 (真正交付给用户使用的,并不是源代码,而是经过编译链接生成的可执行的代码&#xff…

Go语言time库,时间和日期相关的操作方法

time库 用于处理时间、日期和时区的核心库。在实际开发中,常常需要与时间打交道,例如记录日志、处理时间差、计算时间间隔等等。因此,掌握time库的使用方法对于Go开发者来说非常重要。 在Go语言中,时间表示为time.Time类型&…

贝叶斯学习

贝叶斯 贝叶斯学习的背景贝叶斯定理举例 概览选择假设— MAPMAP举例 选择假设 — 极大似然 MLML 举例: 抛硬币问题 极大似然 & 最小二乘Nave Bayesian Classifier (朴素贝叶斯分类器)举例1:词义消歧 (Word Sense Disambiguation)举例 2: 垃圾邮件过滤 从垃圾邮件…

一个.NET开发的Web版Redis管理工具

今天给大家推荐一款web 版的Redis可视化工具WebRedisManager,即可以作为单机的web 版的Redis可视化工具来使用,也可以挂在服务器上多人管理使用的web 版的Redis可视化工具。 WebRedisManager基于SAEA.Socket通信框架中的SAEA.RedisSocket、SAEA.WebApi两…

【Linux】进程信号中的 core dump 标记位

进程信号中的 core dump 标记位 一、什么是core dump二、core dump的使用1、开启core dump2、生成core file文件3、验证进程退出码里面的core dump标志位 三、 core dump的应用 一、什么是core dump 我们知道所有的程序最终运行起来,都会变成进程,进程在…

IL汇编语言读取控制台输入和转换为整数

新建一个testcvt.il; .assembly extern mscorlib {}.assembly Test{.ver 1:0:1:0}.module test.exe.method static void main() cil managed{.maxstack 1.entrypointldstr "\n请输入一个数字:"call void [mscorlib]System.Console::Write(string)call st…

PHP使用PhpSpreadsheet实现导出Excel时带下拉框列表 (可支持三级联动)

因项目需要导出Excel表 需要支持下拉 且 还需要支持三级联动功能 目前应为PHPExcel 不在维护,固采用 PhpSpreadsheet 效果如图: 第一步:首先 使用composer 获取PhpSpreadsheet 我这里PHP 版本 7.4 命令如下: composer r…

js-7:javascript原型、原型链及其特点

1、原型 JavaScript常被描述为一种基于原型的语言-每个对象拥有一个原型对象。 当试图访问一个对象的属性时,它不仅仅在该对象上搜寻,还会搜寻该对象的原型,以及该对象的原型的原型,依次层层向上搜索,直到找到一个名字…

基于边缘无线协同感知的低功耗物联网LPIOT技术:赋能智慧园区方案以及数字工厂领域

回到2000年左右,物联网的底层技术支撑还是“ZigBee”,虽然当时ZigBee的终端功耗指标其实也并不庞大,但是,“拓扑复杂导致工程实施难度大”、“网络规模小导致的整体效率低下”都成为限制其发展的主要因素。 LPWAN,新一…