scDEA一键汇总12种单细胞差异分析方法 DESeq2、edgeR、MAST、monocle、scDD、Wilcoxon

问题来源

单细胞可以做差异分析,但是究竟选择哪种差异分析方法最靠谱呢?

解决办法

于是我去检索文献,是否有相关研究呢?

https://academic.oup.com/bib/article/23/1/bbab402/6375516

文章指出,现有的差异分析方法(包括用于 bulk RNA-seq 和 scRNA-seq 的方法),它们都对样本量和批次效应敏感。

于是本研究没有执着于寻找现有技术中的最佳方法,也没有执着于开发一种新的高精度和稳健的方法,而是借鉴了现有算法的优势,开发了一种基于集成学习的 scRNA-seq 数据差异表达分析方法,名为 scDEAscDEA 利用 Lancaster 组合概率测试方法,整合了来自 12 种独立方法( 既涵盖 bulk RNA-seq 也涵盖 scRNA-seq 数据) 的分析结果,从而得出一个准确且稳健的共识结果。

scDEA 在控制 I 型错误率、富集特定生物功能的差异表达基因检测、以及对不同样本量和不同实验批次的数据集识别出的一致性差异表达基因方面,都优于单个的差异表达分析方法。为了提供用户友好的工具,作者还开发了一个 R 软件包来实现集成分析过程 (https://github.com/Zhangxf-ccnu/scDEA)。此外,还开发了一个 Shiny 应用,以方便用户更轻松地实施和可视化分析结果 (https://github.com/Zhangxf-ccnu/scDEA-shiny)

.scDEA 的工作原理

scDEA 主要包含以下四个步骤:

  1. 对原始计数矩阵进行归一化,以满足各个差异表达分析方法的要求

  2. 运行 12 种差异表达分析方法,并为每个基因生成 p 值

  3. 整合各个方法生成的 p 值,以获得一致的结果

  4. 对整合后的 p 值进行调整,以解决多重检验问题

注意,对于scDEA,我们需要使用counts矩阵哦:

由于一些差异表达分析框架只接受原始计数矩阵,而其他方法则需要归一化表达矩阵作为输入,为了给所有 12 种独立的差异表达分析方法构建统一的输入,scDEA 首先将原始计数矩阵转换为每百万 (CPM) 比对 reads,然后将原始计数矩阵、CPM 归一化表达矩阵和细胞类型标签一起集成,并使用 R 软件包 SingleCellExperiment [20] 保存为一个 SingleCellExperiment 对象。

scDEA R包安装

.scDEA 软件包的依赖

scDEA 软件包依赖以下 R 软件包:BPSC、DEsingle、DESeq2、edgeR、MAST、monocle、scDD、limma、Seurat、zingeR、SingleCellExperiment、scater 和 aggregation。安装 scDEA 时,它可以加载大部分的依赖包。但是,如果依赖项没有正确安装,则需要您自己手动安装。

.Windows 系统上的注意事项

根据经验,scDEA 在 Windows 系统上无法自动安装 BPSC、DEsingle 和 zingeR 软件包,但是在 Ubuntu 16.04 系统上可以加载所有依赖包。因此,如果您在 Windows 系统上使用 scDEA,建议 首先先安装 BPSC、DEsingle 和 zingeR 软件包。

devtools::install_github("nghiavtr/BPSC")BiocManager::install("DEsingle")devtools::install_github("statOmics/zingeR")devtools::install_github("Zhangxf-ccnu/scDEA")

成功安装:

但是,官方教程太简陋了

data("Grun.counts.hvg")data("Grun.group.information")Pvals <- scDEA_individual_methods(raw.count = Grun.counts.hvg, cell.label = Grun.group.information)combination.Pvals <- lancaster.combination(Pvals, weight = TRUE, trimmed = 0.2)adjusted.Pvals <- scDEA.p.adjust(combination.Pvals, adjusted.method = "bonferroni")

还好,示例数据是可以运行的,激动!

最后每个基因都能得到一个p值,但是奇怪的是,作者并没有给出差异基因的表格(我已经问了作者,静候回复)。但是我们可以退而求其次,把findmarker得到的结果和这个p值取交集,进而得到差异基因。

作者说scDEA这种方法可以减少一类错误,减少细胞数目的影响,减少批次效应的影响......

.下面,我使用自己的pbmc数据测试一下.

如果你对示例数据不熟悉,可以参考我之前的推文与直播

1 20231126单细胞直播一理解pbmc处理流程与常用R技巧   

2 单细胞直播一理解seurat数据结构与pbmc处理流程  

3 单细胞数据pbmc数据下载,标准处理流程获取seurat对象

scDEA 主要包含以下四个步骤:

  1. 对原始计数矩阵进行归一化,以满足各个差异表达分析方法的要求

  2. 运行 12 种差异表达分析方法,并为每个基因生成 p 值

  3. 整合各个方法生成的 p 值,以获得一致的结果

  4. 对整合后的 p 值进行调整,以解决多重检验问题

library(scDEA)load("~/gzh/pbmc3k_final_v4.rds")head(pbmc@meta.data)as.matrix(pbmc@assays$RNA@counts)[1:4,1:4]Pvals <- scDEA_individual_methods(raw.count =as.matrix(pbmc@assays$RNA@counts), #此处必须把稀疏矩阵转为常见的矩阵才可以运行----                                  cell.label = pbmc@meta.data$group )combination.Pvals <- lancaster.combination(Pvals, weight = TRUE, trimmed = 0.2)adjusted.Pvals <- scDEA.p.adjust(combination.Pvals, adjusted.method = "bonferroni")

在我自己的数据种,这段代码也是可以运行的哦

后记

1 作者说scDEA这种方法可以减少一类错误,减少细胞数目的影响,减少批次效应的影响......但是,我跑完了他的整个流程,感觉就是真的这么厉害吗

2 另外,为啥实例教程使用hvg呢,而不是使用整个counts?

3 最后,运行的时间有点长啊....

看完记得顺手点个“在看”哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/557655.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言 swab 函数学习

swab函数交换字符串中相邻两个字节&#xff1b; void _swab( char *src, char *dest, int n ); char *src&#xff1a; 要拷贝、转换的字符串&#xff0c; char *dest&#xff0c;转换后存储到dest所表示的字符串&#xff0c; int n要拷贝、转换的字节数&#xff1b; 所…

B011-springcloud alibaba rpc通信 Dubbo

目录 介绍实现提供统一业务api服务提供者1.导入依赖2添加dubbo配置3编写并暴露服务 服务消费者1.导入依赖2添加dubbo配置3引用服务 测试 介绍 Dubbo是阿里巴巴开源的基于 Java 的高性能 RPC分布式服务框架&#xff0c;致力于提供高性能和透明化的 RPC远程服务调用方案&#xf…

生产力工具|GitHub的使用与将其应用到生产中

一、GitHub的相关介绍 &#xff08;一&#xff09;GitHub平台介绍 GitHub &#xff08;GitHub: Let’s build from here GitHub&#xff09;是一个面向开源及私有软件项目的托管平台&#xff0c;它提供了版本控制功能和协作特性&#xff0c;使得团队成员可以共同协作开发、合…

Databend x CubeFS:面向未来的企业级云原生数据存储与分析

用场景的丰富&#xff0c;企业面临着前所未有的数据存储挑战。大规模数据存储变得日常化&#xff0c;伴随着超大容量和快速变化的I/O需求&#xff0c;传统的存储解决方案已经难以满足企业对弹性、运维效率及总体拥有成本&#xff08;TCO&#xff09;的更高要求。这些挑战促使基…

ClickHouse最大QPS到底咋估算?

ClickHouse是用于分析的OLAP数据库&#xff0c;因此典型的使用场景是处理相对较少的请求 — 从每小时几个到每秒几十甚至几百个不等 — 但会影响到大量数据&#xff08;几GB/数百万行&#xff09;。 但是在其他情况下&#xff0c;它的表现如何&#xff1f;让我们尝试用大量小请…

基于python+vue的幼儿园管理系统flask-django-php-nodejs

随着信息时代的来临&#xff0c;过去的传统管理方式缺点逐渐暴露&#xff0c;对过去的传统管理方式的缺点进行分析&#xff0c;采取计算机方式构建幼儿园管理系统。本文通过课题背景、课题目的及意义相关技术&#xff0c;提出了一种活动信息、课程信息、菜谱信息、通知公告、家…

基于python+vue银行柜台管理系统flask-django-php-nodejs

课题主要采用python开发语言、django框架和MySQL数据库开发技术以及基于Eclipse的编辑器。系统主要包括通知信息、用户信息、银行信息、卡号账户、存款信息管理、取款信息、转账信息、贷款信息、贷款申请、贷款发放、账单信息、还款信息等功能&#xff0c;从而实现智能化的管理…

微信小程序分销返佣模式--小程序1-3级分销插件--小程序分销--

团购小程序是一种基于社区团购模式的电商平台&#xff0c;主要面向社区居民用户。 如果你想要开发一款分销团购小程序可以参考以下功能需求进行开发制作。 1、用户注册和登录 提供用户注册和登录功能&#xff0c;使用户能够创建和管理他们的账户。 2、会员管理 包括会员注…

html5cssjs代码 035 课程表

html5&css&js代码 035 课程表 一、代码二、解释基本结构示例代码常用属性样式和装饰响应式表格辅助技术 一个具有亮蓝色背景的网页&#xff0c;其中包含一个样式化的表格用于展示一周课程安排。表格设计了交替行颜色、鼠标悬停效果以及亮色表头&#xff0c;并对单元格设…

《云计算:数字时代的引擎》

在数字化时代&#xff0c;云计算技术以其强大的计算能力和灵活的应用方式&#xff0c;成为推动各行各业发展的引擎。本文将围绕云计算的技术进展、技术原理、行业应用案例、面临的挑战与机遇以及未来趋势进行详细探讨。 云计算的技术进展 云计算的技术进展涵盖了多个方面&…

Linux下Docker部署中间件(Mysql、Redis、Nginx等)

我的自备文件 文件传输 内网下直接上传很慢 使用scp命令将另一台服务器上的文件传输过来&#xff1b;在已有文件的服务器往没有文件的服务器传输 scp -r 传输的文件夹/文件 root要传输的地址:放置的地址 scp -r tools root172.xx.x.xxx:/data/ 安装二进制文件、脚本及各中间件…

八大排序算法之希尔排序

希尔排序是插入排序的进阶版本&#xff0c;他多次调用插入排序&#xff0c;在插入排序上进行了改造&#xff0c;使其处理无序的数据时候更快 核心思想&#xff1a;1.分组 2.直接插入排序&#xff1a;越有序越快 算法思想&#xff1a; 间隔式分组&#xff0c;利用直接插入排序…