ClickHouse最大QPS到底咋估算?

ClickHouse是用于分析的OLAP数据库,因此典型的使用场景是处理相对较少的请求 — 从每小时几个到每秒几十甚至几百个不等 — 但会影响到大量数据(几GB/数百万行)。

但是在其他情况下,它的表现如何?让我们尝试用大量小请求来测试ClickHouse如何处理。这将帮助我们更好地了解可能的使用场景范围和限制。

本文分为两个部分:

  • 连接基准测试和测试设置
  • 涉及实际数据的最大QPS的场景

环境

对于初始测试,我选择了一台旧工作站:

  • 4核 Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz
  • 8GB RAM
  • SSD硬盘
  • CentOS 7

本文中呈现的结果是从该计算机收集的,但当然,很有趣的是在更强大的硬件上重复这些测试。我把这项任务交给我们的读者,这样你就可以在自己的硬件上测试ClickHouse在不同场景下的最大QPS。如果你这样做了,请分享你的结果!为了运行基准测试,我还创建了一组脚本,可以在Altinity的GitHub上免费获取:https://github.com/Altinity/clickhouse-sts/。这些脚本需要Docker(我使用的是v18.09)和Bash。要运行测试套件,只需克隆GitHub存储库,并在根文件夹中运行‘make test’命令。它会在你的主机上执行所有测试(需要几个小时),并将结果放入一个CSV文件中,稍后可以在Excel、Pandas或ClickHouse本身中进行分析。当然,你也可以分享你的发现,以便与本文中的结果进行比较。

这些脚本使用了以下工具:

  • https://github.com/wg/wrk,一个轻量级且快速的HTTP基准测试工具,允许创建不同的HTTP工作负载
  • ClickHouse发行版中包含的clickhouse-benchmark工具,用于本地协议ClickHouse测试

这两个工具都允许你创建所需并发量的负载(模拟不同数量的并发客户端),并测量每秒处理的查询数和延迟百分位数。

关于ClickHouse处理并发请求的几点说明

默认情况下,ClickHouse可以处理高达4096个入站连接(max_connections在服务器配置文件中设置),但只会同时执行100个查询(max_concurrent_queries),因此所有其他客户端将在队列中等待。客户端请求可以保持在队列中的最长时间由queue_max_wait_ms设置定义(默认为5000或5秒)。这是一个用户/配置文件设置,因此用户可以定义较小的值,在队列过长的情况下提示异常。http连接的长连接超时默认相对较短 — 3秒(keep_alive_timeout设置)。

还有许多高级网络相关设置,用于微调不同的超时、轮询间隔、监听回溯大小等设置。

HTTP ping:HTTP服务器的理论最大吞吐量

首先,让我们检查ClickHouse自身使用的HTTP服务器有多快。换句话说,服务器可以处理多少个“无所事事”的请求。

对于HTTP,两种主要情况很重要:

  • 使用保持连接(保持持久连接进行多个请求,而无需重新连接)
  • 不使用保持连接(每个请求都建立新连接)

此外,默认情况下ClickHouse的日志级别非常详细(‘trace’)。对于每个查询,它会向日志文件写入几行,这对于调试很好,但当然会增加一些额外的延迟。因此,我们还要检查禁用日志的相同2种场景。

我们对不同并发级别进行了测试,以模拟不同数量的同时连接的客户端(一个接一个地发送请求)。每个测试执行15秒,然后取每秒处理的平均请求数。

结果:

img

在X轴上,您可以看到同时连接的客户端数。在Y轴上,我们有每个特定场景中每秒处理的平均请求数。

好吧,结果看起来不错:

  • 在每个场景中,在8到64个并发连接之间,QPS的最大值都在那台机器上。
  • 最大吞吐量约为97K QPS,启用保持连接并禁用日志。
  • 启用日志时,速度要慢大约30%,大约为71K QPS。
  • 两个不使用保持连接的变体要慢得多(约为18.5 kqps),甚至在这里看不出日志开销。这是预期的,因为使用保持连接,ClickHouse肯定可以处理更多的ping,因为跳过了为每个请求建立连接的额外成本。

现在我们对最大理论可能吞吐量有了感觉,以及ClickHouse Web服务器可以实现的并发级别。实际上,ClickHouse的HTTP服务器实现相当快。例如,NGINX在相同的机器上使用默认设置大约可以提供30K每秒。

SELECT 1

让我们再进一步,检查一个微不足道的 ‘SELECT 1’ 请求。这样的查询在查询解析阶段被‘执行’,因此这将展示‘网络 + 授权 + 查询解析器 + 格式化结果’的理论最大吞吐量,即真实请求永远不会更快。

我们将测试使用保持连接和不使用保持连接的http和https选项,以及本地客户端(安全和非安全)。

结果如下:

img

这些结果与简单的ping相比显示了相当大的降级。我们得到了:

  • 最佳情况下约为14K QPS:http & 保持连接。
  • https & 保持连接情况稍差(13K QPS)。在这种情况下,https的开销并不显著。
  • http 不使用保持连接时约为10.7 kqps。
  • 本地客户端(不安全)约为10.1 kqps。
  • 本地客户端(安全)约为9.3 kqps。
  • 无保持连接的https表现相当差,约为4.3 kqps。

在最高并发级别上,我们注册了几十个连接错误(即少于0.01%),这很可能是由于操作系统层面的套接字重用问题引起的。ClickHouse在该测试中表现稳定,我没有注册到任何明显的问题。

本地协议显示的性能比http更差可能会让人惊讶,但实际上这是预期的:本地TCP/IP更加复杂,具有许多额外的协议特性。它不适合高QPS,而是适合传输大块数据。

此外,在本地客户端中,随着并发性增加,QPS会出现相当大的下降,在更高的并发级别(>3000)时系统会变得不响应并返回无结果。这很可能是由于clickhouse-benchmark工具为每个连接使用一个单独的线程,线程数和上下文切换过多导致的。

现在让我们看看延迟,即每个客户端等待答案的时间。这个数字在每个请求中会有所变化,因此图表显示了每种情况下延迟的90th percentile。这意味着90%的用户得到的答案比显示的数字更快。

延迟(90th percentile)– 1-256 并发级别

img

随着并发性的增长,延迟的恶化是可以预料的。目前看起来非常不错:如果您少于256个并发用户,您可以期望延迟在50毫秒以下。

让我们看看高并发性会如何影响。

延迟(90th percentile)– >256 并发级别

img

现在延迟的恶化更为显著,而且本地协议再次显示出最差的结果。

有趣的是,不使用保持连接的http请求表现非常稳定,并且即使有2K并发用户,延迟也低于50ms。没有保持连接时,延迟更加可预测,并且标准差在并发性增加时保持较小,但QPS会略有降低。这可能与Web服务器的实现细节有关:例如,当使用每个连接一个线程时,线程上下文切换可能会减慢服务器速度,并在一定并发级别后增加延迟。

我们还检查了其他设置,如max_concurrent_queriesqueue_max_wait_msmax_threadsnetwork_compression_methodenable_http_compression以及一些输出格式。在这种情况下调整它们的影响大多是可以忽略的。

多线程的影响

默认情况下,ClickHouse使用多个线程处理更大的查询,以有效利用所有CPU核心。

然而,如果您有大量并发连接,多线程将会增加上下文切换、重新加入线程和工作同步方面的额外成本。

为了衡量并发连接与多线程之间的相互作用,让我们来看一下使用默认多线程设置和max_threads=1设置进行的合成选择,以找到最大的100K个随机数的差异。

img

结论非常简单:在高并发场景中实现更高的QPS,使用max_threads=1设置。

未完待续…

本文涵盖了对ClickHouse的一般连接性测试。我们检查了服务器本身的速度有多快,它可以处理多少简单查询以及哪些设置会影响高并发场景下的QPS。请查看后续文章,我们将深入估算在键值场景中实际查询的最大QPS,这将为测试案例添加数据。

关注我,紧跟本系列专栏文章,咱们下篇再续!

作者简介:魔都技术专家兼架构,多家大厂后端一线研发经验,各大技术社区头部专家博主。具有丰富的引领团队经验,深厚业务架构和解决方案的积累。

负责:

  • 中央/分销预订系统性能优化

  • 活动&优惠券等营销中台建设

  • 交易平台及数据中台等架构和开发设计

    目前主攻降低软件复杂性设计、构建高可用系统方向。

参考:

  • 编程严选网

    本文由博客一文多发平台 OpenWrite 发布!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/557650.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于python+vue的幼儿园管理系统flask-django-php-nodejs

随着信息时代的来临,过去的传统管理方式缺点逐渐暴露,对过去的传统管理方式的缺点进行分析,采取计算机方式构建幼儿园管理系统。本文通过课题背景、课题目的及意义相关技术,提出了一种活动信息、课程信息、菜谱信息、通知公告、家…

基于python+vue银行柜台管理系统flask-django-php-nodejs

课题主要采用python开发语言、django框架和MySQL数据库开发技术以及基于Eclipse的编辑器。系统主要包括通知信息、用户信息、银行信息、卡号账户、存款信息管理、取款信息、转账信息、贷款信息、贷款申请、贷款发放、账单信息、还款信息等功能,从而实现智能化的管理…

微信小程序分销返佣模式--小程序1-3级分销插件--小程序分销--

团购小程序是一种基于社区团购模式的电商平台,主要面向社区居民用户。 如果你想要开发一款分销团购小程序可以参考以下功能需求进行开发制作。 1、用户注册和登录 提供用户注册和登录功能,使用户能够创建和管理他们的账户。 2、会员管理 包括会员注…

html5cssjs代码 035 课程表

html5&css&js代码 035 课程表 一、代码二、解释基本结构示例代码常用属性样式和装饰响应式表格辅助技术 一个具有亮蓝色背景的网页,其中包含一个样式化的表格用于展示一周课程安排。表格设计了交替行颜色、鼠标悬停效果以及亮色表头,并对单元格设…

《云计算:数字时代的引擎》

在数字化时代,云计算技术以其强大的计算能力和灵活的应用方式,成为推动各行各业发展的引擎。本文将围绕云计算的技术进展、技术原理、行业应用案例、面临的挑战与机遇以及未来趋势进行详细探讨。 云计算的技术进展 云计算的技术进展涵盖了多个方面&…

Linux下Docker部署中间件(Mysql、Redis、Nginx等)

我的自备文件 文件传输 内网下直接上传很慢 使用scp命令将另一台服务器上的文件传输过来;在已有文件的服务器往没有文件的服务器传输 scp -r 传输的文件夹/文件 root要传输的地址:放置的地址 scp -r tools root172.xx.x.xxx:/data/ 安装二进制文件、脚本及各中间件…

八大排序算法之希尔排序

希尔排序是插入排序的进阶版本,他多次调用插入排序,在插入排序上进行了改造,使其处理无序的数据时候更快 核心思想:1.分组 2.直接插入排序:越有序越快 算法思想: 间隔式分组,利用直接插入排序…

java多线程使用与踩坑

SpringBoot使用多线程简单方法:地址 线程安全查阅资料参考:地址 背景: 经过上述资料查看,我想写个方法(依靠notify()唤醒,依靠wait()等待)实现两个线程轮流打印。 配置多线程方法1 实现&…

学成在线_视频处理_视频转码不成功

问题 当我们用xxljob进行视频处理中的转码操作时会发现视频转码不成功。即程序会进入下图所示的if语句内。 问题原因 在进行视频转码时程序会调用Mp4VideoUtil类下的 generateMp4方法,而result接收的正是该方法的返回值。那么什么时候generateMp4方法的返回值会…

个性化影片推荐系统|基于JSP技术+ Mysql+Java+ Tomcat的个性化影片推荐系统设计与实现(可运行源码+数据库+设计文档)

推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 2024年56套包含java,ssm,springboot的平台设计与实现项目系统开发资源(可…

html5cssjs代码 034 自定义字体

html5&css&js代码 034 自定义字体 一、代码二、解释 这是一个带有自定义字体的网页,设置了页面背景颜色、文字颜色以及全局样式。它定义了三种自定义字体并通过font-face规则引入外部字体文件,并通过CSS类(.f1, .f2, .f3)…

基于Python3的数据结构与算法 - 16 链表

目录 链表 1. 创建链表 2. 链表的插入和删除 3. 双链表 4. 链表总结 链表 链表是由一系列节点组成的元素集合。每个节点包含两部分,数据域item和指向下一个节点得指针next。通过节点之间的相互连接,最终串联成一个链表。 class Node:def __init…