Matlab|基于分布式ADMM算法的考虑碳排放交易的电力系统优化调度研究

目录

1 主要内容

目标函数

计算步骤

节点系统

2 部分代码

3 程序结果

4 下载链接


主要内容

程序完全复现文献《A Distributed Dual Consensus ADMM Based on Partition for DC-DOPF with Carbon Emission Trading》,建立了一个考虑碳排放交易的最优模型,首先,对测试系统(6节点或者30节点或者118节点系统)进行了分区,以便后续ADMM算法的应用,其次,构建了DC-DOPF的最优潮流模型作为主要应用场景,以发电+买卖排放配额费用之和为目标函数,考虑碳排放约束、潮流约束以及耦合约束等约束条件,程序考虑了负荷需求响应和碳排放交易,从而符合目前低碳调度的研究热点,算法方面采用ADMM算法,也就是交替方向乘子法,更加创新,而且求解的效果更好,代码质量非常高,保姆级的注释以及人性化的模块子程序,所有数据均明确可靠来源,非常方便学习!

  • 目标函数

  • 计算步骤

  • 节点系统

程序默认节点系统为118节点系统,代码如下:

FileName = 'SCUC_dat/DDOPF118.txt'; %Corresponding to the 118-bus system in literature [7];对应文献[7]中的118-bus system

可以通过修改节点系统名称来验证其他节点(6节点或者30节点)系统模型,程序已经内置了这部分代码,可以通过取消注释即可实现。

%             FileName = 'SCUC_dat/SCUC6.txt';    %Corresponding to the 6-bus System;对应文中6bus例子
%             FileName = 'SCUC_dat/SCUC30.txt'; %Corresponding to the 30-bus System;对应文中30bus例子
%             FileName = 'SCUC_dat/SCUC6-2.txt';  %Corresponding to the 6-bus System in literature [7];对应文献[7]中的6-bus system
%             FileName = 'SCUC_dat/SCUC1062-2.txt';  %Corresponding to the 1062-bus System;对应文中1062-bus例子
%             FileName = 'SCUC_dat/RTS48.txt'; %Corresponding to the RTS-48 bus system.The test system can obtain from [44];对应文中RTS0-48 bus例子
​

部分代码

                        if isequal(k,1) %第一次形成p_t并记下对应的区间即可p_t_index = []; %存储p_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引seta_t_index = []; %存储seta_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引for i = 1:size(allNodes,1)bus_sequence_index = find(ismember(SCUC_data.busUnits.bus_sequence,allNodes(i,1))==1); %allNodes(i,1)在SCUC_data.busUnits.bus_sequence上的索引P_start_index = (PbusUnitsNumber(i,1) - PbusUnitsNumber(1,1) + i - 1); %allNodes(i,1)对应变量P前面的所有变量P和θ的总数量Seta_start_index = (PbusUnitsNumber(i+1,1) - PbusUnitsNumber(1,1) + i - 1); %allNodes(i,1)对应变量θ前面的所有变量P和θ的总数量if ~isempty(bus_sequence_index) %The bus with unit. 节点上有发电机for j = 1:size(SCUC_data.busUnits.unitIndex{bus_sequence_index,1},1)p_t(units_number,:) = XJ(P_start_index*T + (j-1)*T + 1:P_start_index*T + (j-1)*T + T);%Pp_t_index(units_index,1) = P_start_index*T + (j-1)*T + 1;p_t_index(units_index,2) = P_start_index*T + (j-1)*T + T;p_t_index(units_index,3) = units_number;units_number = units_number + 1;units_index = units_index + 1;endelse %The bus without unit.节点上没有发电机p_t(units_number,:) = XJ(P_start_index*T + 1:P_start_index*T + T);%Punits_number = units_number + 1;endseta_t(i,:) = XJ(Seta_start_index*T + 1:Seta_start_index*T + T);%θseta_t_index(i,1) = Seta_start_index*T + 1;seta_t_index(i,2) = Seta_start_index*T + T;seta_t_index(i,3) = i;endelse  %按照第一次记下的变量顺序即可p_t = zeros(partitionData.PIUnitsNumber{end}-partitionData.PIUnitsNumber{1},T);seta_t = zeros(size(seta_t_index,1),T);for i = 1:size(p_t_index,1)p_t(p_t_index(i,3),:) = XJ(p_t_index(i,1):p_t_index(i,2));endfor i = 1:size(seta_t_index,1)seta_t(seta_t_index(i,3),:) = XJ(seta_t_index(i,1):seta_t_index(i,2));endendelseif isequal(includeDR,'yes')PINumber = partitionData.PINumber;EINumber = partitionData.EINumber;piecewiseNumber = SCUC_data.elasticBus.piecewiseNumber; %分段函数分的段数K = SCUC_data.elasticBus.N;%弹性节点数量dr_t = zeros(K,T); %弹性负荷变量drhr_t = zeros(piecewiseNumber,T,K); %辅助变量Hr,第一个参数对应分段数,第二个参数对应时段,第三个参数对应节点编号%按照片区顺序for i = 1:nDindex = 2*(PINumber{i+1}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T; %+2为考虑碳排放的两个变量Hindex = Dindex + T; %取dr和hrfor j = 1:EINumber{i+1}-EINumber{i}%dr的行按照partitionData.allElasticityNodes中节点编号的顺序dr_t(EINumber{i}-1+j,:) = XJ((j-1)*(piecewiseNumber+1)*T+1+Dindex:(j-1)*(piecewiseNumber+1)*T+T+Dindex); %drfor r = 1:piecewiseNumberhr_t(r,:,EINumber{i}-1+j) = XJ((j-1)*(piecewiseNumber+1)*T+(r-1)*T+1+Hindex:(j-1)*(piecewiseNumber+1)*T+(r-1)*T+T+Hindex); %hrendendendif isequal(k,1) p_t_index = []; %存储p_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引seta_t_index = []; %存储seta_t中每行在XJ中的索引,第一列为初始索引,第二列为结束索引,第三列为行索引%按照片区顺序for i = 1:nPindex = 2*(PINumber{i}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T; %+2为考虑碳排放的两个变量Dindex = 2*(PINumber{i+1}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T; %+2为考虑碳排放的两个变量Hindex = Dindex + T; %取P和θfor j = 1:PINumber{i+1}-PINumber{i}%xx的行按照partitionData.allNodes(即allNodes)中节点编号的顺序p_t(PINumber{i}-1+j,:) = XJ(2*(j-1)*T+1+Pindex:2*(j-1)*T+T+Pindex);%Pseta_t(PINumber{i}-1+j,:) = XJ(2*(j-1)*T+T+1+Pindex:2*(j-1)*T+2*T+Pindex);%θp_t_index(PINumber{i}-1+j,1) = 2*(j-1)*T+1+Pindex;p_t_index(PINumber{i}-1+j,2) = 2*(j-1)*T+T+Pindex;p_t_index(PINumber{i}-1+j,3) = PINumber{i}-1+j;seta_t_index(PINumber{i}-1+j,1) = 2*(j-1)*T+T+1+Pindex;seta_t_index(PINumber{i}-1+j,2) = 2*(j-1)*T+2*T+Pindex;seta_t_index(PINumber{i}-1+j,3) = PINumber{i}-1+j;endendelse  %按照第一次记下的变量顺序即可p_t = zeros(size(p_t_index,1),T);seta_t = zeros(size(seta_t_index,1),T);for i = 1:size(p_t_index,1)p_t(p_t_index(i,3),:) = XJ(p_t_index(i,1):p_t_index(i,2));endfor i = 1:size(seta_t_index,1)seta_t(seta_t_index(i,3),:) = XJ(seta_t_index(i,1):seta_t_index(i,2));endendelsedr_t = []; %弹性负荷变量drhr_t = []; %辅助变量Hrfor i = 1:Np_t(i,:) = XJ((i-1)*2*T+1:(i-1)*2*T+T);%Pseta_t(i,:) = XJ((i-1)*2*T+T+1:(i-1)*2*T+2*T);%θendend

程序结果

原文结果图:

该图和上述结果图1趋势完全一致,验证代码的可行性。

4 下载链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/562369.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

国产“芯“希望|PCIe 5.0 SSD以后就靠它了~

当前复杂的国际环境下,尤其是面对技术封锁和供应链风险,中国对核心技术的自主可控提出了更高的要求。在半导体领域,国产化进程加速,尤其是在处理器和存储控制器等关键组件上寻求替代方案。选用RISC-V架构符合这一趋势,…

【漏洞复现】WordPress Plugin NotificationX 存在sql注入CVE-2024-1698

漏洞描述 WordPress和WordPress plugin都是WordPress基金会的产品。WordPress是一套使用PHP语言开发的博客平台。该平台支持在PHP和MySQL的服务器上架设个人博客网站。WordPress plugin是一个应用插件。 WordPress Plugin NotificationX 存在安全漏洞,该漏洞源于对用户提供的…

JS08-DOM节点完整版

DOM节点 查找节点 父节点 <div class="father"><div class="son">儿子</div></div><script>let son = document.querySelector(.son)console.log(son.parentNode);son.parentNode.style.display = none</script>通过…

利用Scala与Apache HttpClient实现网络音频流的抓取

概述 在当今数字化时代&#xff0c;网络数据的抓取和处理已成为许多应用程序和服务的重要组成部分。本文将介绍如何利用Scala编程语言结合Apache HttpClient工具库实现网络音频流的抓取。通过本文&#xff0c;读者将学习如何利用强大的Scala语言和Apache HttpClient库来抓取网…

什么是行业垂直类媒体?有哪些?怎么邀约

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体胡老师。 行业垂直类媒体是聚焦于特定行业或领域的媒体平台。 行业垂直类媒体不同于主流媒体&#xff0c;它们专注于提供与某个特定领域相关的深入内容和服务&#xff0c;例如商业新闻、旅游、数字…

数据结构系列-空间复杂度讲解

&#x1f308;个人主页&#xff1a;会编程的果子君 &#x1f4ab;个人格言:“成为自己未来的主人~” 空间复杂度 空间复杂度也是一个数学表达式&#xff0c;是对一个算法在运行过程中临时占用存储空间大小的量度。 空间复杂度不是程序占用了多少bytes的空间&#xff0c;因…

单片机基础知识

目录 微型计算机基本结构 总线 片内总线和片外总线 数据总线地址总线与控制总线 系统总线和IO总线 微处理器的内部结构 内部寄存器 通用寄存器 指针和变址寄存器 段寄存器 控制寄存器 标志寄存器 存储器的基本结构 存储器的分类 IO接口的功能 外部设备与CPU之间…

Prometheus+Grafana 监控Tongweb嵌入式(by lqw)

文章目录 1.思路2.部署准备3.Grafana仪表盘json文件下载4.tw嵌入式jar包本地引入依赖并测试运行5.运行jmx_prometheus_javaagent-0.19.0.jar形式获取监控数据&#xff08;方法一&#xff09;6.使用Actuator 获取监听数据&#xff08;方法二&#xff09;7.Prometheus部署8.Prome…

Matlab|基于条件风险价值CVaR的微网动态定价与调度策略

目录 1 主要内容 模型示意图 电能交易流程 模型亮点 2 部分代码 3 程序结果 4 下载链接 1 主要内容 程序复现文章《A cooperative Stackelberg game based energy management considering price discrimination and risk assessment》&#xff0c;建立基于主从博弈的考虑…

几种常见的IO模型学习

IO模型 IO模型&#xff08;输入输出模型&#xff09;是计算机科学中用于描述程序如何处理输入、产生输出以及与外部系统交互的一种概念模型。在操作系统和网络编程中&#xff0c;IO模型尤其重要&#xff0c;因为它们决定了程序如何与文件、网络套接字和其他资源进行通信。以下…

图像处理ASIC设计方法 笔记12 图像旋转ASIC中心控制器状态机

P109 1 流水线图像旋转ASIC整体架构 中心控制器负责各个模块的状态控制和数据调度,接收到外部启动信号后,进人芯片初始化阶段,片上FIFO接收外部输入的图像旋转参数、接收完毕后,再利用接收到的旋转角度到查找表中找到对应的正弦和正切值。 中心控制器将接收到的行列信息…

数学建模------MATLAB学习使用

1.多项式的表示和方程求解 多项式就是使用行向量分别表示前面的系数&#xff0c;这个需要按照一定的顺序&#xff0c;而且为0的系数不能够省略&#xff0c;按照从高到低的顺序进行表示&#xff1b; 我们接下来演示一下如何求多项式的根&#xff1a; 我们首先来认识一下求多项…