【网络编程】利用套接字实现一个简单的网络通信(UDP实现聊天室 附上源码)

00

网络编程套接字

  • 🐛预备知识
    • 🦋理解源IP地址和目的IP地址
    • 🐌认识端口号
    • 🐞 理解 "端口号" 和 "进程ID"
    • 🐜简单认识TCP协议
    • 🦟简单认识UDP协议
    • 🦗 什么是网络字节序
  • 🕷相关函数端口介绍
    • 🕸 socket相关API介绍
    • 🦂sockaddr结构
    • 🐢 sockaddr_in结构
  • 🐍 简单的UDP网络程序
    • 🦎log.hpp 日志文件
    • 🦖 udpClient.cc 客户端
    • 🦕 udpServer.cc 服务器
    • 🐙 makefile文件
    • 运行:

🐛预备知识

🦋理解源IP地址和目的IP地址

源IP地址(Source IP Address):

源IP地址是数据包发送方(或数据流出发点)的唯一标识符。它用于在互联网或本地网络中定位发送数据包的设备或主机。源IP地址是数据包的出发点,即数据从这个地址开始传送,向目的IP地址指示的设备发送。
在TCP/IP协议中,源IP地址通常由发送方的操作系统或网络栈分配,并在数据包的IP首部中进行标记。

目的IP地址(Destination IP Address):

目的IP地址是数据包的接收方(或数据流的目标点)的唯一标识符。它用于在互联网或本地网络中定位接收数据包的设备或主机。目的IP地址是数据包的终点,即数据传输的目标地址,数据包应该传输到这个地址。
在TCP/IP协议中,目的IP地址通常由应用程序或网络栈设置,并在数据包的IP首部中进行标记。
这两个地址在数据包传输过程中起着非常重要的作用,确保数据从源设备正确地传递到目标设备,实现网络通信。IP地址是一个32位的二进制数,通常用点分十进制表示(例如,192.168.0.1),其中前24位表示网络地址,后8位表示主机地址。

🐌认识端口号

端口号(port)是传输层协议的内容.
端口号是一个2字节16位的整数;
端口号用来标识一个进程, 告诉操作系统, 当前的这个数据要交给哪一个进程来处理;
IP地址 + 端口号能够标识网络上的某一台主机的某一个进程;
一个端口号只能被一个进程占用.

🐞 理解 “端口号” 和 “进程ID”

  • 端口号(Port Number)和进程ID(Process ID)是在计算机网络和操作系统中用于不同目的的标识符。

端口号:

端口号是在计算机网络中用于标识特定进程或服务的数字。 它是一个16位的无符号整数,取值范围是0到65535。
在TCP/IP网络中,每个传输控制协议(TCP)和用户数据报协议(UDP)的通信端点都与一个端口号相关联。 这样,计算机上的不同进程或服务可以通过不同的端口号进行通信,从而实现多个应用程序的并发运行。
例如,HTTP服务通常使用端口号80,HTTPS使用端口号443,SMTP使用端口号25等。

进程ID:

进程ID是操作系统中用于标识运行中进程(或线程)的唯一标识符。 它是一个非负整数,通常由操作系统在进程创建时分配。
在多任务操作系统中,每个运行中的进程都有一个唯一的进程ID,操作系统通过进程ID来跟踪和管理不同的进程。
进程ID的范围通常由操作系统定义,可以是一个较小的数值范围,也可以是一个较大的范围。

区别:

端口号是在计算机网络中用于标识不同进程或服务的通信端点,用于实现多个应用程序的并发运行。 进程ID是操作系统中用于标识运行中进程的唯一标识符,用于跟踪和管理不同的进程。
端口号是在网络通信中使用的,而进程ID是在操作系统层级使用的。
端口号是一个16位的数字,进程ID是一个非负整数。

🐜简单认识TCP协议

传输层协议
有连接
可靠传输
面向字节流

🦟简单认识UDP协议

传输层协议
无连接
不可靠传输
面向数据报

🦗 什么是网络字节序

网络字节序是一种在计算机网络中使用的固定字节顺序,用于在不同计算机体系结构和操作系统之间传递数据。 在计算机内部,不同的体系结构(例如x86、ARM、SPARC等)和操作系统(例如Windows、Linux、iOS等)可能使用不同的字节顺序,这可能导致在网络通信中出现问题。

为了解决这个问题,网络通信中使用了统一的字节顺序,即网络字节序。 网络字节序采用大端字节序(Big-Endian)表示法,其中较高的字节位于较低的内存地址上,较低的字节位于较高的内存地址上。

举例说明:

假设一个16位整数0x1234(十进制为4660)在内存中存储为两个字节:0x12和0x34。

在大端字节序中,较高的字节(0x12)存储在较低的内存地址,较低的字节(0x34)存储在较高的内存地址。 即内存地址由高到低,数据依次为0x12 0x34。
在小端字节序中,较低的字节(0x34)存储在较低的内存地址,较高的字节(0x12)存储在较高的内存地址。 即内存地址由高到低,数据依次为0x34 0x12。

在网络通信中,发送方将数据转换为网络字节序后发送,接收方收到数据后将其转换为本地字节序进行处理,以保证在不同计算机体系结构和操作系统之间正确地传递数据。 常用的网络编程库(例如Socket编程)通常会自动处理字节序的转换。

🕷相关函数端口介绍

🕸 socket相关API介绍

  • man手册
    在这里插入图片描述

Socket(套接字)是一种用于网络通信的编程接口,它允许计算机之间通过网络传输数据。 在Socket编程中,我们可以使用一组API函数来创建、绑定、连接、发送和接收数据等操作。

  • 以下是常用的Socket API函数及其参数:
  1. socket()函数:
  • 描述:创建一个新的套接字。
  • 参数:int socket(int domain, int type, int protocol)
  • domain:套接字的地址族,常用的有AF_INET(IPv4)和AF_INET6(IPv6)。
  • type:套接字的类型,常用的有SOCK_STREAM(流式套接字,用于TCP)和SOCK_DGRAM(数据报套接字,用于UDP)。
  • protocol:使用的协议,通常为0(自动选择与type相关的默认协议)。
  1. bind()函数:
  • 描述:将套接字绑定到一个特定的地址和端口。
  • 参数:int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen)
  • sockfd:套接字描述符。
  • addr:指向要绑定的地址结构的指针,通常是struct sockaddr_in(IPv4)或struct sockaddr_in6(IPv6)。
  • addrlen:地址结构的长度。
  1. connect()函数:
  • 描述:建立与远程服务器的连接。
  • 参数:int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen)
  • sockfd:套接字描述符。
  • addr:指向目标服务器地址的指针,通常是struct sockaddr_in(IPv4)或struct sockaddr_in6(IPv6)。
  • addrlen:地址结构的长度。
  1. listen()函数:
  • 描述:将套接字设置为监听模式,准备接受连接请求。
  • 参数:int listen(int sockfd, int backlog)
  • sockfd:套接字描述符。
  • backlog:请求队列的最大长度,即等待接受连接的连接数。
  1. accept()函数:
  • 描述:接受连接请求,创建一个新的套接字用于与客户端通信。
  • 参数:int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen)
  • sockfd:监听套接字描述符。
  • addr:指向客户端地址的指针,用于存储客户端的信息。
  • addrlen:地址结构的长度。
  1. send()函数:
  • 描述:发送数据。
  • 参数:ssize_t send(int sockfd, const void *buf, size_t len, int flags)
  • sockfd:套接字描述符。
  • buf:要发送的数据缓冲区。
  • len:要发送的数据长度。
  • flags:发送标志,通常为0。
  1. recv()函数:
  • 描述:接收数据。
  • 参数:ssize_t recv(int sockfd, void *buf, size_t len, int flags)
  • sockfd:套接字描述符。
  • buf:接收数据的缓冲区。
  • len:要接收的数据长度。
  • flags:接收标志,通常为0。
  1. close()函数:
  • 描述:关闭套接字。
  • 参数:int close(int sockfd)
  • sockfd:套接字描述符。

使用Socket API时,通常的流程是创建一个套接字、绑定到一个地址和端口(可选)、监听连接请求(可选)、接受连接请求、发送和接收数据,最后关闭套接字。 服务器端和客户端使用不同的套接字操作,服务器端用于监听连接请求和处理客户端请求,而客户端用于建立连接和发送请求给服务器端。

🦂sockaddr结构

sockaddr 是一个通用的套接字地址结构,在Socket编程中经常用于存储网络地址信息。由于不同的协议族(IPv4、IPv6等)具有不同的地址结构,因此 sockaddr 用作地址结构的基类,而实际使用时通常会使用具体的子结构 sockaddr_in(IPv4)或 sockaddr_in6(IPv6)。

struct sockaddr {sa_family_t sa_family;      // 地址族,通常为 AF_INET 或 AF_INET6char sa_data[14];           // 存放地址信息的缓冲区,不同协议族具有不同的结构
};

在实际使用时,通常会将 sockaddr 结构转换为适合当前协议族的具体地址结构。例如,在IPv4协议中,使用 sockaddr_in 结构,其定义如下:

struct sockaddr_in {sa_family_t sin_family;     // 地址族,固定为 AF_INETin_port_t sin_port;         // 16位端口号,使用网络字节序struct in_addr sin_addr;    // 32位IPv4地址,使用网络字节序char sin_zero[8];           // 不使用,填充字段
};

在IPv6协议中,使用 sockaddr_in6 结构,其定义如下:

struct sockaddr_in6 {sa_family_t sin6_family;     // 地址族,固定为 AF_INET6in_port_t sin6_port;         // 16位端口号,使用网络字节序uint32_t sin6_flowinfo;      // 流标识,通常为0struct in6_addr sin6_addr;   // 128位IPv6地址,使用网络字节序uint32_t sin6_scope_id;      // 接口范围标识
};

在使用 结构时,通常需要进行类型转换,将其转换为适用于当前协议族的地址结构,并根据需要填充具体的地址信息,然后传递给套接字相关的函数使用。

🐢 sockaddr_in结构

sockaddr_in 是用于存储IPv4地址的套接字地址结构,是在网络编程中非常常用的结构。它用于在IPv4协议族中表示网络地址和端口号。下面是 sockaddr_in 结构的定义:

struct sockaddr_in {sa_family_t sin_family;     // 地址族,固定为 AF_INETin_port_t sin_port;         // 16位端口号,使用网络字节序struct in_addr sin_addr;    // 32位IPv4地址,使用网络字节序char sin_zero[8];           // 不使用,填充字段
};

其中,各字段的含义如下:

sin_family:地址族,固定为 AF_INET,表示IPv4地址族。
sin_port:16位端口号,使用网络字节序,需要使用 htons 函数进行字节序转换。
sin_addr:32位IPv4地址,使用网络字节序,需要使用 inet_pton 函数将点分十进制形式的IPv4地址转换为网络字节序。
sin_zero:不使用,填充字段,通常设置为0。
使用 结构时,通常先将IPv4地址和端口号填充到该结构中,然后将其转换为通用的 sockaddr_insockaddr 结构,在套接字相关的函数中使用。

例如,在服务器端绑定一个IPv4地址和端口号,可以这样做:

#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>int main() {int sockfd = socket(AF_INET, SOCK_STREAM, 0);if (sockfd < 0) {perror("socket");return -1;}struct sockaddr_in server_addr;server_addr.sin_family = AF_INET;server_addr.sin_port = htons(8080); // 将端口号转换为网络字节序inet_pton(AF_INET, "127.0.0.1", &server_addr.sin_addr); // 将IPv4地址转换为网络字节序memset(server_addr.sin_zero, 0, sizeof(server_addr.sin_zero));if (bind(sockfd, (struct sockaddr*)&server_addr, sizeof(server_addr)) < 0) {perror("bind");close(sockfd);return -1;}// 其他操作...close(sockfd);return 0;
}

注意,在使用 sockaddr_in 结构时,需要包含 <netinet/in.h> 头文件,并且要进行网络字节序的转换。

🐍 简单的UDP网络程序

🦎log.hpp 日志文件

#pragma once#include <cstdio>
#include <ctime>
#include <cstdarg>
#include <cassert>
#include <cstring>
#include <cerrno>
#include <stdlib.h>#define DEBUG 0
#define NOTICE 1
#define WARINING 2
#define FATAL 3const char *log_level[]={"DEBUG", "NOTICE", "WARINING", "FATAL"};// logMessage(DEBUG, "%d", 10);
void logMessage(int level, const char *format, ...)
{assert(level >= DEBUG);assert(level <= FATAL);char *name = getenv("USER");char logInfo[1024];va_list ap; // ap -> char*va_start(ap, format);vsnprintf(logInfo, sizeof(logInfo)-1, format, ap);va_end(ap); // ap = NULLFILE *out = (level == FATAL) ? stderr:stdout;fprintf(out, "%s | %u | %s | %s\n", \log_level[level], \(unsigned int)time(nullptr),\name == nullptr ? "unknow":name,\logInfo);// char *s = format;// while(s){//     case '%'://         if(*(s+1) == 'd')  int x = va_arg(ap, int);//     break;// }
}

🦖 udpClient.cc 客户端

#include <iostream>
#include <string>
#include <cstdlib>
#include <cassert>
#include <unistd.h>
#include <strings.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <pthread.h>struct sockaddr_in server;static void Usage(std::string name)
{std::cout << "Usage:\n\t" << name << " server_ip server_port" << std::endl;
}void *recverAndPrint(void *args)
{while (true){int sockfd = *(int *)args;char buffer[1024];struct sockaddr_in temp;socklen_t len = sizeof(temp);ssize_t s = recvfrom(sockfd, buffer, sizeof(buffer), 0, (struct sockaddr *)&temp, &len);if (s > 0){buffer[s] = 0;std::cout << "server echo# " << buffer << std::endl;}}
}// ./udpClient server_ip server_port
// 如果一个客户端要连接server必须知道server对应的ip和port
int main(int argc, char *argv[])
{if (argc != 3){Usage(argv[0]);exit(1);}// 1. 根据命令行,设置要访问的服务器IPstd::string server_ip = argv[1];uint16_t server_port = atoi(argv[2]);// 2. 创建客户端// 2.1 创建socketint sockfd = socket(AF_INET, SOCK_DGRAM, 0);assert(sockfd > 0);// 2.2 client 需不需要bind??? 需要bind,但是不需要用户自己bind,而是os自动给你bind// 所谓的"不需要",指的是: 不需要用户自己bind端口信息!因为OS会自动给你绑定,你也最好这么做!// 如果我非要自己bind呢?可以!严重不推荐!// 所有的客户端软件 <-> 服务器 通信的时候,必须得有 client[ip:port] <-> server[ip:port]// 为什么呢??client很多,不能给客户端bind指定的port,port可能被别的client使用了,你的client就无法启动了// 那么server凭什么要bind呢??server提供的服务,必须被所有人知道!server不能随便改变!// 2.2 填写服务器对应的信息bzero(&server, sizeof server);server.sin_family = AF_INET;server.sin_port = htons(server_port);server.sin_addr.s_addr = inet_addr(server_ip.c_str());pthread_t t;pthread_create(&t, nullptr, recverAndPrint, (void *)&sockfd);// 3. 通讯过程std::string buffer;while (true){std::cerr << "Please Enter# ";std::getline(std::cin, buffer);// 发送消息给serversendto(sockfd, buffer.c_str(), buffer.size(), 0,(const struct sockaddr *)&server, sizeof(server)); // 首次调用sendto函数的时候,我们的client会自动bind自己的ip和port}close(sockfd);return 0;
}

🦕 udpServer.cc 服务器

#include <iostream>
#include <string>
#include <cstring>
#include <unistd.h>
#include <stdlib.h>
#include <ctype.h>
#include <unordered_map>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>#include "log.hpp"
static void Usage(const std::string porc)
{std::cout << "Usage:\n\t" << porc << " port [ip]" << std::endl;
}class udpServer
{public:udpServer(int port, std::string ip = "") : port_((uint16_t)port), ip_(ip), sockfd_(-1){}~udpServer(){}void init()//初始化函数{//1.创建套接字sockfd_=socket(AF_INET,SOCK_DGRAM,0);//  参数1:套接字的协议族     `AF_INET`: IPv4协议族,用于Internet地址。//参数2:套接字类型    `SOCK_DGRAM`: 面向消息的套接字,用于不可靠的、固定长度的数据传输(如UDP)。//参数3:套接字的协议    0,让系统自动选择合适的协议。if(sockfd_<0) //创建失败 打印日志信息{logMessage(FATAL, "socket:%s:%d", strerror(errno), sockfd_);exit(1);}//到这说明 创建成功logMessage(DEBUG, "socket create success: %d", sockfd_);struct sockaddr_in local;  // local在哪里开辟的空间? 用户栈 -> 临时变量 -> 写入内核中bzero(&local, sizeof(local)); // memset// 填充协议家族,域local.sin_family = AF_INET;// 填充服务器对应的端口号信息,一定是会发给对方的,port_一定会到网络中local.sin_port = htons(port_);// 服务器都必须具有IP地址,"xx.yy.zz.aaa",字符串风格点分十进制 -> 4字节IP -> uint32_t ip// INADDR_ANY(0): 程序员不关心会bind到哪一个ip, 任意地址bind,强烈推荐的做法,所有服务器一般的做法// inet_addr: 指定填充确定的IP,特殊用途,或者测试时使用,除了做转化,还会自动给我们进行 h—>nlocal.sin_addr.s_addr = ip_.empty() ? htonl(INADDR_ANY) : inet_addr(ip_.c_str());// 2.2 bind 网络信息if (bind(sockfd_, (const struct sockaddr *)&local, sizeof(local)) == -1){logMessage(FATAL, "bind: %s:%d", strerror(errno), sockfd_);exit(2);}logMessage(DEBUG, "socket bind success: %d", sockfd_);// done}void start(){// 服务器设计的时候,服务器都是死循环char inbuffer[1024];  //将来读取到的数据,都放在这里char outbuffer[1024]; //将来发送的数据,都放在这里while (true){struct sockaddr_in peer;      //输出型参数socklen_t len = sizeof(peer); //输入输出型参数// demo2//  UDP无连接的//  对方给你发了消息,你想不想给对方回消息?要的!后面的两个参数是输出型参数ssize_t s = recvfrom(sockfd_, inbuffer, sizeof(inbuffer) - 1, 0,(struct sockaddr *)&peer, &len);if (s > 0){inbuffer[s] = 0; //当做字符串}else if (s == -1){logMessage(WARINING, "recvfrom: %s:%d", strerror(errno), sockfd_);continue;}// 读取成功的,除了读取到对方的数据,你还要读取到对方的网络地址[ip:port]std::string peerIp = inet_ntoa(peer.sin_addr);       //拿到了对方的IPuint32_t peerPort = ntohs(peer.sin_port); // 拿到了对方的portcheckOnlineUser(peerIp, peerPort, peer); //如果存在,什么都不做,如果不存在,就添加// 打印出来客户端给服务器发送过来的消息logMessage(NOTICE, "[%s:%d]# %s", peerIp.c_str(), peerPort, inbuffer);// for(int i = 0; i < strlen(inbuffer); i++)// {//     if(isalpha(inbuffer[i]) && islower(inbuffer[i])) outbuffer[i] = toupper(inbuffer[i]);//     else outbuffer[i] = toupper(inbuffer[i]);// }messageRoute(peerIp, peerPort,inbuffer); //消息路由// 线程池!// sendto(sockfd_, outbuffer, strlen(outbuffer), 0, (struct sockaddr*)&peer, len);// demo1// logMessage(NOTICE, "server 提供 service 中....");// sleep(1);}}void checkOnlineUser(std::string &ip, uint32_t port, struct sockaddr_in &peer){std::string key = ip;key += ":";key += std::to_string(port);auto iter = users.find(key);if(iter == users.end()){users.insert({key, peer});}else{// iter->first, iter->second->// do nothing}}void messageRoute(std::string ip, uint32_t port, std::string info){std::string message = "[";message += ip;message += ":";message += std::to_string(port);message += "]# ";message += info;for(auto &user : users){sendto(sockfd_, message.c_str(), message.size(), 0, (struct sockaddr*)&(user.second), sizeof(user.second));}}private:// 服务器必须得有端口号信息uint16_t port_;// 服务器必须得有ip地址std::string ip_;// 服务器的socket fd信息int sockfd_;// onlineuserstd::unordered_map<std::string, struct sockaddr_in> users;};
int main(int argc, char *argv[])
{if (argc != 2 && argc != 3) //反面:argc == 2 || argc == 3{Usage(argv[0]);exit(3);}uint16_t port = atoi(argv[1]);std::string ip;if (argc == 3){ip = argv[2];}udpServer svr(port, ip);svr.init();svr.start();return 0;
}

🐙 makefile文件

.PHONY:all
all:udpClient udpServerudpClient: UCPClient.ccg++ -o $@ $^ -std=c++11 -lpthread
udpServer:UDPServer.ccg++ -o $@ $^ -std=c++11.PHONY:clean
clean:rm -f udpClient udpServer

运行:

000
设置对对应的端口号就行

🦑 🦐 🦞 🦀 🐡 🐠 🐟 🐬 🐳 🐋 🦈 🐊 🐅 🐆 🦓 🦍 🦧 🦣 🐘 🦛

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/56415.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

opencv36-形态学操作-膨胀 cv2.dilate()

膨胀操作是形态学中另外一种基本的操作。膨胀操作和腐蚀操作的作用是相反的&#xff0c;膨胀操作能对图像的边界进行扩张。膨胀操作将与当前对象&#xff08;前景&#xff09;接触到的背景点合并到当前对象内&#xff0c;从而实现将图像的边界点向外扩张。如果图像内两个对象的…

替换开源LDAP,某科技企业用宁盾目录统一身份,为业务敏捷提供支撑

客户介绍 某高科技企业成立于2015年&#xff0c;是一家深耕于大物流领域的人工智能公司&#xff0c;迄今为止已为全球16个国家和地区&#xff0c;120余家客户打造智能化升级体验&#xff0c;场景覆盖海陆空铁、工厂等货运物流领域。 该公司使用开源LDAP面临的挑战 挑战1 开源…

读取文件和写入文件操作

在java中会涉及到对文件进行读取和写入操作&#xff0c;以下将介绍如何用java对文件进行读取和写入 读取 通过Readr读取字符流文件中的数据 读取字符流文件中的数据表示以字符为单位进行读取 package 文件操作;import java.io.*;/*** Created with IntelliJ IDEA.* Descript…

ubuntu调整路由顺序

Ubuntu系统跳转路由顺序 1、安装ifmetric sudo apt install ifmetric2、查看路由 route -n3、把Iface下面的eth1调到第一位 sudo ifmetric eth1 0命令中eth1是网卡的名称&#xff0c;更改网卡eth1的跃点数&#xff08;metric值&#xff09;为0&#xff08;数值越小&#xf…

Spring Boot集成Mybatis-Plus

Spring Boot集成Mybatis-Plus 1. pom.xml导包 <!--lombok--><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></dependency><!--mysql驱动--><dependency><groupId>mysql<…

【排序算法】python之冒泡,选择,插入,快速,归并

参考资料&#xff1a; 《Python实现5大排序算法》《六大排序算法&#xff1a;插入排序、希尔排序、选择排序、冒泡排序、堆排序、快速排序》 --代码似乎是C语言 ———————— 本文介绍5种常见的排序算法和基于Python实现&#xff1a; 冒泡排序&#xff08;Bubble Sort&am…

【C++】哈希开散列 | unordered系列容器的封装

文章目录 一.开散列1. 开散列的概念2. 开散列结构3. Insert 插入4. Find 查找5. Insert 扩容6. Erase 删除7. 析构函数8. 其它函数接口9. 性能测试 二.封装1. 封装内部结构2. 实现接口 三.代器器1. 迭代器的定义2. 常用接口3. 迭代器4. begin()、end()5. find的改动6. 下标访问…

检查网站是HTTP那种协议与获取域名的ipv6地址

前言 最近在做HTTPS的应用&#xff0c;可能需要使用ipv6的地址做SLB&#xff0c;但是怎么检查配置正确&#xff0c;总不能每次都看日志吧&#xff0c;实际上客户端也很容易查看&#xff0c;总结工作经验。 检查HTTP协议版本 笔者想到了使用浏览器方式&#xff0c;或者抓包&a…

Java Selenium WebDriver 网页填报

一、windows环境安装配置 1.安装chrome浏览器 在“关于chrome”界面&#xff0c;查看浏览器版本号 2.下载chromeDriver 在https://registry.npmmirror.com/binary.html?pathchromedriver/下载对应版本的驱动&#xff08;如果浏览器版本过新&#xff0c;建议下载最接近的版…

Docker环境下MySQL备份恢复工具XtraBackup使用详解 | Spring Cloud 62

一、XtraBackup 简介 Percona XtraBackup是一个开源的MySQL和MariaDB数据库备份工具&#xff0c;它能够创建高性能、一致性的备份&#xff0c;并且对生产环境的影响很小。Percona XtraBackup通过在不停止MySQL服务器的情况下&#xff0c;复制InnoDB存储引擎的数据文件和事务日…

fetch-github-hosts间隔一年大更新v2.6发布,多端支持

前言 fetch-github-hosts是一款同步 github hosts 的工具&#xff0c;用于帮助您解决github时而无法访问的问题。在间隔了一年之久的时间&#xff0c;最近抽空将fetch-github-hosts的依赖及UI进行了一波大更新&#xff0c;同时也增加了一些实用的功能。 主要更新 更新了基础依…

Linux 中利用设备树学习Ⅳ

系列文章目录 第一章 Linux 中内核与驱动程序 第二章 Linux 设备驱动编写 &#xff08;misc&#xff09; 第三章 Linux 设备驱动编写及设备节点自动生成 &#xff08;cdev&#xff09; 第四章 Linux 平台总线platform与设备树 第五章 Linux 设备树中pinctrl与gpio&#xff08;…