竞赛 python+opencv+机器学习车牌识别

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于机器学习的车牌识别系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题介绍

1.1 系统简介

车牌识别这个系统,虽然传统,古老,却是包含了所有这四个特侦的一个大数据技术的缩影.

在车牌识别中,你需要处理的数据是图像中海量的像素单元;你处理的数据不再是传统的结构化数据,而是图像这种复杂的数据;如果不能在很短的时间内识别出车牌,那么系统就缺少意义;虽然一副图像中有很多的信息,但可能仅仅只有那一小块的信息(车牌)以及车身的颜色是你关心,而且这些信息都蕴含着巨大的价值。也就是说,车牌识别系统事实上就是现在火热的大数据技术在某个领域的一个聚焦,通过了解车牌识别系统,可以很好的帮助你理解大数据技术的内涵,也能清楚的认识到大数据的价值。

1.2 系统要求

  • 它基于openCV这个开源库,这意味着所有它的代码都可以轻易的获取。
  • 它能够识别中文,例如车牌为苏EUK722的图片,它可以准确地输出std:string类型的"苏EUK722"的结果。
  • 它的识别率较高。目前情况下,字符识别已经可以达到90%以上的精度。

1.3 系统架构

整体包含两个系统:

  • 车牌检测
  • 车牌字体识别(中文 + 数字 + 英文)

整体架构如下:
在这里插入图片描述

2 实现方式

2.1 车牌检测技术

车牌检测(Plate Detection):

对一个包含车牌的图像进行分析,最终截取出只包含车牌的一个图块。这个步骤的主要目的是降低了在车牌识别过程中的计算量。如果直接对原始的图像进行车牌识别,会非常的慢,因此需要检测的过程。在本系统中,我们使用SVM(支持向量机)这个机器学习算法去判别截取的图块是否是真的“车牌”。

车牌检测这里不详细说明, 只贴出opencv图像处理流程, 需要代码的可以留下邮箱

在这里插入图片描述
使用到的图像处理算法

  • 高斯模糊
  • 灰度化处理
  • Sobel算子(边缘检测)
  • 开操作
  • 闭操作
  • 仿射变换
  • 霍姆线性检测
  • 角度矫正

2.2 车牌识别技术

字符识别(Chars Recognition):

有的书上也叫Plate
Recognition,我为了与整个系统的名称做区分,所以改为此名字。这个步骤的主要目的就是从上一个车牌检测步骤中获取到的车牌图像,进行光学字符识别(OCR)这个过程。其中用到的机器学习算法是著名的人工神经网络(ANN)中的多层感知机(MLP)模型。最近一段时间非常火的“深度学习”其实就是多隐层的人工神经网络,与其有非常紧密的联系。通过了解光学字符识别(OCR)这个过程,也可以知晓深度学习所基于的人工神经网路技术的一些内容。

我们这里使用深度学习的方式来对车牌字符进行识别, 为什么不用传统的机器学习进行识别呢, 看图就知道了:
在这里插入图片描述
图2 深度学习(右)与PCA技术(左)的对比
可以看出深度学习对于数据的分类能力的优势。

这里博主使用生成对抗网络进行字符识别训练, 效果相当不错, 识别精度达到了98%

在这里插入图片描述

2.3 SVM识别字符

定义

    class SVM(StatModel):def __init__(self, C = 1, gamma = 0.5):self.model = cv2.ml.SVM_create()self.model.setGamma(gamma)self.model.setC(C)self.model.setKernel(cv2.ml.SVM_RBF)self.model.setType(cv2.ml.SVM_C_SVC)#训练svmdef train(self, samples, responses):self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)

调用方法,喂数据

    def train_svm(self):#识别英文字母和数字self.model = SVM(C=1, gamma=0.5)#识别中文self.modelchinese = SVM(C=1, gamma=0.5)if os.path.exists("svm.dat"):self.model.load("svm.dat")

训练,保存模型

else:
​    			chars_train = []
​    			chars_label = []for root, dirs, files in os.walk("train\\chars2"):if len(os.path.basename(root)) > 1:continueroot_int = ord(os.path.basename(root))for filename in files:filepath = os.path.join(root,filename)digit_img = cv2.imread(filepath)digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)chars_train.append(digit_img)#chars_label.append(1)chars_label.append(root_int)chars_train = list(map(deskew, chars_train))chars_train = preprocess_hog(chars_train)#chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)chars_label = np.array(chars_label)print(chars_train.shape)self.model.train(chars_train, chars_label)

车牌字符数据集如下

在这里插入图片描述
在这里插入图片描述

这些是字母的训练数据,同样的还有我们车牌的省份简写:

在这里插入图片描述

在这里插入图片描述

核心代码

   predict_result = []roi = Nonecard_color = Nonefor i, color in enumerate(colors):if color in ("blue", "yello", "green"):card_img = card_imgs[i]gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)#黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向if color == "green" or color == "yello":gray_img = cv2.bitwise_not(gray_img)ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)#查找水平直方图波峰x_histogram  = np.sum(gray_img, axis=1)x_min = np.min(x_histogram)x_average = np.sum(x_histogram)/x_histogram.shape[0]x_threshold = (x_min + x_average)/2wave_peaks = find_waves(x_threshold, x_histogram)if len(wave_peaks) == 0:print("peak less 0:")continue#认为水平方向,最大的波峰为车牌区域wave = max(wave_peaks, key=lambda x:x[1]-x[0])gray_img = gray_img[wave[0]:wave[1]]#查找垂直直方图波峰row_num, col_num= gray_img.shape[:2]#去掉车牌上下边缘1个像素,避免白边影响阈值判断gray_img = gray_img[1:row_num-1]y_histogram = np.sum(gray_img, axis=0)y_min = np.min(y_histogram)y_average = np.sum(y_histogram)/y_histogram.shape[0]y_threshold = (y_min + y_average)/5#U和0要求阈值偏小,否则U和0会被分成两半wave_peaks = find_waves(y_threshold, y_histogram)#for wave in wave_peaks:#	cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2) #车牌字符数应大于6if len(wave_peaks) <= 6:print("peak less 1:", len(wave_peaks))continuewave = max(wave_peaks, key=lambda x:x[1]-x[0])max_wave_dis = wave[1] - wave[0]#判断是否是左侧车牌边缘if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis/3 and wave_peaks[0][0] == 0:wave_peaks.pop(0)#组合分离汉字cur_dis = 0for i,wave in enumerate(wave_peaks):if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:breakelse:cur_dis += wave[1] - wave[0]if i > 0:wave = (wave_peaks[0][0], wave_peaks[i][1])wave_peaks = wave_peaks[i+1:]wave_peaks.insert(0, wave)#去除车牌上的分隔点point = wave_peaks[2]if point[1] - point[0] < max_wave_dis/3:point_img = gray_img[:,point[0]:point[1]]if np.mean(point_img) < 255/5:wave_peaks.pop(2)if len(wave_peaks) <= 6:print("peak less 2:", len(wave_peaks))continuepart_cards = seperate_card(gray_img, wave_peaks)for i, part_card in enumerate(part_cards):#可能是固定车牌的铆钉if np.mean(part_card) < 255/5:print("a point")continuepart_card_old = part_cardw = abs(part_card.shape[1] - SZ)//2part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value = [0,0,0])part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)#part_card = deskew(part_card)part_card = preprocess_hog([part_card])if i == 0:resp = self.modelchinese.predict(part_card)charactor = provinces[int(resp[0]) - PROVINCE_START]else:resp = self.model.predict(part_card)charactor = chr(resp[0])#判断最后一个数是否是车牌边缘,假设车牌边缘被认为是1if charactor == "1" and i == len(part_cards)-1:if part_card_old.shape[0]/part_card_old.shape[1] >= 7:#1太细,认为是边缘continuepredict_result.append(charactor)roi = card_imgcard_color = colorbreakreturn predict_result, roi, card_color#识别到的字符、定位的车牌图像、车牌颜色

2.4 最终效果

最后算法部分可以和你想要的任何UI配置到一起:

可以这样 :
在这里插入图片描述

也可以这样:
在这里插入图片描述

甚至更加复杂一点:
在这里插入图片描述

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/571327.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

为什么上级总能提出问题和风险

首先要搞清楚什么是风险&#xff0c;风险就是目标与实际的GAP&#xff0c;所谓能发现风险就是对目标的理解更深入&#xff0c;对目标的实现具有更高要求&#xff0c;GAP越大能发现的风险越多 &#x1f4a1;目标不同&#xff1a; 1.高层领导关注长期指标&#xff0c;比如他会看…

【Java面试题】计算机网络

文章目录 1.计算机网络基础1.1网络分层模型/OSI七层模型是什么&#xff1f;1.2TCP/IP四层模型是什么&#xff1f;每一层的作用&#xff1f;1.2.1TCP四层模型&#xff1f;1.2.2为什么网络要分层&#xff1f; 1.2常见网络协议1.2.1应用层常见的协议1.2.2网络层常见的协议 2.HTTP2…

OSCP靶场--Extplorer

OSCP靶场–Extplorer 考点(信息收集linux磁盘组用户提权) 1.nmap扫描 ## ┌──(root㉿kali)-[~/Desktop] └─# nmap 192.168.194.16 -sV -sC --min-rate 2500 Starting Nmap 7.92 ( https://nmap.org ) at 2024-03-26 20:21 EDT Nmap scan report for 19…

css预处理器scss的使用如何全局引入

目录 scss 基本功能 1、嵌套 2、变量 $ 3、mixin 和 include 4、extend 5、import scss 在项目中的使用 1、存放 scss 文件 2、引入 variables 和 mixins 2-1、局部引入 2-2、全局引入 3、入口文件中引入其他文件 项目中使用 css 预处理器&#xff0c;可以提高 cs…

第一个JDBC程序

一、JDBC的概念&#xff1a; JDBC 是 Java DataBase Connectivity (Java 数据连接)技术的简称&#xff0c;是一种可用于执行 SQL 语句的 Java API。它由一些 java 语言编写的类和接口组成&#xff1b;程序员通过使用 jdbc 可以方便地将 SQL 语句传送给几乎任何一种数据库。 二…

通过一篇文章让你了解C++是什么

C是什么 前言一、什么是C二、C的发展史三、C的重要性3.1 计算机语言的使用广泛度3.2 在工作领域3.3公司需求 四、公司是如何面试C的 前言 C是一种编程语言&#xff0c;它在20世纪80年代作为C语言的扩展而开发出来。它是一种编译型语言&#xff0c;这意味着用C编写的程序在执行…

可以放在桌面上使用的便签有哪款?怎么挑选桌面便签软件

在日常工作和生活中&#xff0c;一款能够放在桌面使用的便签软件&#xff0c;无疑会极大地提升我们的工作效率和便捷性。那么&#xff0c;网上究竟有哪些值得推荐的桌面便签app呢&#xff1f;今天&#xff0c;我要为大家介绍一款既实用又便捷的桌面便签软件——敬业签。 这款软…

C++引用学习day2

思维导图 定义一个矩形类&#xff08;Rectangle&#xff09;&#xff0c;包含私有成员&#xff1a;长(length)、宽&#xff08;width&#xff09;, 定义成员函数&#xff1a; 设置长度&#xff1a;void set_l(int l) 设置宽度&#xff1a;void set_w(int w) 获取长度&#…

java 8 stream api将List<T>转换成树形结构

1、新建实体类 package com.example.springboot3.entity;import lombok.Builder; import lombok.Data;import java.util.List;Data Builder public class Menu {/*** id*/public Integer id;/*** 名称*/public String name;/*** 父id &#xff0c;根节点为0*/public Integer p…

项目资源管理——降本增效(上)

什么是项目资源 一切具有使用价值&#xff0c;可为项目接受和利用&#xff0c;且属于项目发展过程所需要的客观存在的资源。 包括实物资源和团队资源&#xff08;人力资源&#xff09;。 项目资源管理的主要目的是确保项目所需的资源得到有效的规划、分配和控制&#xff0c;以支…

RocketMQ 流数据库解析:如何实现一体化流处理?

作者&#xff1a;林清山&#xff08;隆基&#xff09; 前言&#xff1a; 从初代开源消息队列崛起&#xff0c;到 PC 互联网、移动互联网爆发式发展&#xff0c;再到如今 IoT、云计算、云原生引领了新的技术趋势&#xff0c;消息中间件的发展已经走过了 30 多个年头。 目前&a…

MPDataDoc类介绍

MPDataDoc类介绍 使用mp数据库新接口mp_api.client.MPRester获取数据&#xff0c;例子如下&#xff1a; from mp_api.client import MPResterwith MPRester(API_KEY) as mpr:docs mpr.summary.search(material_ids["mp-1176451", "mp-561113"])以上代码返…