Netty教程之NIO基础

NIO

介绍

NIO 全称java non-blocking IO(非阻塞 I/O),后续提供了一系列改进的输入/输出的新特性,被统称为 NIO(即 New IO),是同步非阻塞的。

        阻塞和非阻塞是进程在访问数据的时候,数据是否准备就绪的一种处理方式,当数据没有准备的时候。

阻塞(Block):往往需要等待缓冲区中的数据准备好过后才处理其他的事情,否则一直等待在那里。

非阻塞(Non-Block):当我们的进程访问我们的数据缓冲区的时候,如果数据没有准备好则直接返回,不会等待。如果数据已经准备好,也直接返回

         同步和异步都是基于应用程序和操作系统处理 IO 事件所采用的方式;

同步:应用程序要直接参与 IO 读写的操作,必须阻塞在某个方法上面等待我们的 IO 事件完成

异步:所有的 IO 读写交给操作系统去处理,应用程序只需要等待通知,可以去做其他的事情,并不需要去完成真正的 IO 操作,当操作完成 IO 后,会给我们的应用程序一个通知

特点

1.非阻塞式的I/O操作。这意味着一个线程可以同时管理多个连接,而不必等待每个连接的I/O操作完成

2.通过Channel和Buffer来进行数据传输。Channel表示与实体(文件、套接字等)的连接,而Buffer是用于在Channel和应用程序之间传输数据的缓冲区

3.提供了内存映射文件的功能,可以将文件直接映射到内存中,从而实现了快速的文件I/O操作

4.提供了灵活的缓冲区管理功能,可以方便地进行数据的读取、写入和处理

5.采用了面向块的数据传输方式,可以一次性传输大量数据,提高了I/O操作的效率

运用场景

        适用于连接数目多且连接比较短(轻操作)的架构,比如聊天服务器,弹幕系统,服务器间通讯等

三大组件

NIO的三个最重要的核心分别为:Channel,Buffer和Selector

Channel(通道)

        通道;对原 I/O 包中的流的模拟,到任何目的地(或来自任何地方)的所有数据都必须通过一个 Channel 对象,通道是双向的(一个Channel既可以读数据,也可以写数据)

常见类型:

        FileChannel

        DatagramChannel

        SocketChannel

        ServerSocketChannel

FileChannel主要用于文件传输,其他三种用于网络通信。

Buffer(缓冲区)

缓冲区;实际上是一个容器对象,对数组进行了封装,用数组来缓存数据,还定义了一些操作数组的API,如 put()、get()、flip()、compact()、mark() 等。在NIO中,无论读还是写,数据都必须经过Buffer缓冲区.

        ByteBuffer

                MappedByteBuffer
                DirectByteBuffer
                HeapByteBuffer

        ShortBuffer
        IntBuffer
        LongBuffer
        FloatBuffer
        DoubleBuffer
        CharBuffer
其中最常用的是ByteBuffer

Selector(选择器)

        选择器;是一个特殊的组件,用于采集各个通道的状态(或者事件)

socket连接方法

Socket编程理解为对TCP协议的具体实现。

多线程技术

系统为每一个连接分配一个thread(线程),分别去处理对应的socket连接

缺点:

        1.内存占用高。每有一个socket连接,系统就要分配一个线程去对接。当出现大量连接时,会开辟大量线程,导致占用大量内存。

        2.线程上下文切换成本高

        3.只适合连接数较少的场景

线程上下文切换:
        一个CPU在同一个时刻是只能处理一个线程的,由于时间片耗尽或出现阻塞等情况,CPU 会转去执行另外一个线程,这个叫做线程上下文切换

线程池技术

使用线程池,让线程池中的线程去处理连接

缺点:

        1.在阻塞模式下,线程只能处理一个连接。线程池中的线程获取任务,只有当任务完成/socket断开连接,才会去获取执行下一个任务

        2.只适合短链接的场景

selector技术

为每个线程配合一个选择器,让选择器去管理多个channel。(注:FileChannel是阻塞式的,因此无法使用选择器。)
让选择器去管理多个工作在非阻塞式下的Channel,获取Channel上的事件,当一个Channel没有任务时,就转而去执行别的Channel上的任务。这种适合用在连接多,流量小的场景。

        若事件未就绪,调用 selector 的 select() 方法会阻塞线程,直到 channel 发生了就绪事件。这些事件就绪后,select 方法就会返回这些事件交给 thread 来处理。

ByteBuffer

简单示例

public class TestByteBuffer {public static void main(String[] arge){try{//1.输入输出流,文件数据传输FileChannel channel = new FileInputStream("network-program/data.txt").getChannel();//2.准备缓冲区,并设置大小ByteBuffer buffer = ByteBuffer.allocate(10);//3.从channel读取数据,并写入buffer中channel.read(buffer);//4.buffer切换成读模式buffer.flip();//5.判断是否还有剩余未读数据while (buffer.hasRemaining()){byte b = buffer.get();System.out.print((char)b);}}catch (Exception e){e.printStackTrace();}}
}

使用步骤

1.向buffer写入数据,如:channel.read(buffer);

2.调用flip()切换至读模式

3.从buffer读取数据,如:buffer.get();

4.调用clear()或compact()切换到写模式

属性

        capacity:缓冲区的容量,不可变

        limit:缓冲区的界限。limit之后的数据不允许读写

        position:读写指针。position不可大于limit,且position不为负数

        mark:标记。记录当前position的值。position被改变后,可以通过调用reset() 方法恢复到mark的位置

 常见方法

allocate方法

        通过allocate我们可以给ByteBuffer分配空间,但是这个空间不可以动态变换,如果想要改变ByteBuffer的大小只能重新分配一个

ByteBuffer.allocate(10);

allocateDirect方法

通过allocateDirect我们也可以给ByteBuffer分配空间

ByteBuffer.allocateDirect(10);

allocate 与 allocateDirect的区别:

1.allocate创建出来的是HeapByteBuffer对象,allocateDirect创建出来的是DirectByteBuffer对象

2.HeapByteBuffer是存在于JVM的堆内存中,DirectByteBuffer是存在于直接(系统)内存中

3.HeapByteBuffer的读写效率低于DirectByteBuffer,因为HeapByteBuffer存在于jvm中的,自然会收到垃圾回收器的影响

4.DirectByteBuffer使用不当,容易造成内存泄露

put方法

put方法可以将数据放入到缓冲区中。操作完成后,position的值会+1,并指向下一个可存放的区域,limit=capacity

buffer.put(byte b);

flip方法

flip方法会切换对当前缓冲区的去操作,写/读->读/写

buffer.flip();

当是读模式切换到写模式时,恢复为put时的值。 

get方法

get方法会读取缓冲区里的数据,一次只能读取一个。读取后,position的值会+1,指向下一个可读区。当position大于limit时,会报异常。get方法如果传入指定的索引位置:get(i)。则position的值不会产生变动。

buffer.get();

clear方法

clean方法就像初始化一样,会把ByteBuffer的里属性值都恢复到最初,并且清除缓冲区里的数据。

buffer.clear();

compact方法

compact方法会把已经读取的数据清除,后面未读取的数据向前压缩,然后切换到写模式。
数据前移后,原始位置的数据不会清楚,但是在后面的写入操作中会被覆盖。

buffer.compact();

rewind方法

rewind方法只能在读模式下使用,使用后,会恢复position、limit和capacity的值

buffer.rewind();

mark方法和reset方法

这个两个方法通常都是搭配着使用。
mark做一个标记,会保存当前position的值;reset方法会把mark保存的值重新赋给position。

buffer.mark();

buffer.reset();

字符串与ByteBuffer的相互转换

方法一:

        // 编码:字符串的getByte方法ByteBuffer buffer = ByteBuffer.allocate(15);buffer.put(str.getBytes());

方法二:

        // 编码:StandardCharsets的encode方法获取ByteBufferByteBuffer buffer2 = StandardCharsets.UTF_8.encode(str);

方法三:

        ByteBuffer buffer3 = ByteBuffer.wrap(str.getBytes());// 解码: 通过StandardCharsets的decoder方法解码String decodeStr3 = StandardCharsets.UTF_8.decode(buffer3).toString();

黏包和半包

黏包:发送方在发送数据时,并不是一条一条地发送数据,而是将数据整合在一起,当数据达到一定的数量后再一起发送。这就会导致多条信息被放在一个缓冲区中被一起发送出去。
半包:因为我们分配缓冲区的大小是固定,如果空间小于数据量,那就只能先把当前缓冲区里的数据读取完,再去接收剩下的的数据。数据就会出现被截断的断层现象。

如:

  • Hello world!\n

  • I’m LIKEGAKKI!\n

  • How are you?\n
    经过传输后,服务端的产生了两个ByteBuffer:

  • Hello,world\nI’m LIKEGAKKI\nHo(黏包)

  • w are you?\n?(半包)

重新拆分:

public class TestByteBufferExam {public static void main(String[] args){ByteBuffer buffer = ByteBuffer.allocate(32);buffer.put("Hello,world\nI,m zhangsan\nHo".getBytes());split(buffer);buffer.put("w are you?\n".getBytes());split(buffer);}private static void split(ByteBuffer buffer){buffer.flip();for(int i = 0;i<buffer.limit();i++){if(buffer.get(i) == '\n'){int length = i + 1 - buffer.position();ByteBuffer byteBuffer = ByteBuffer.allocate(length);for(int j = 0;j<length;j++){byteBuffer.put(buffer.get());}System.out.println(byteBuffer.get());}}buffer.compact();}

在循环中用get(i)方法依次读取数据,当读取的数据匹配‘\n’时,说明之前的读取的是一段信息。

记录该段数据长度,以便于申请对应大小的缓冲区;将缓冲区的数据通过get()方法写入到target中。

调用compact方法切换模式,因为缓冲区中可能还有未读的数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/571600.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springboot:Actuator监控

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 一、Actuator介绍 二、集成步骤 三、重要端点介绍 1、/actuator 2、/actuator/env 3、/actuator/heapdump 4、/actuator/metrics 5、/actuator/shutdown 6、/l…

HWM豪迈电子听漏仪维修相关仪XMIC-lite DXmic-lite

漏水检测系列仪器维修Leakage ManagemHWM豪迈电子听漏仪维修XMIC-lite DXmic-liteent检测仪器包括&#xff1a;Xmic电子听漏仪维修、Xmic-lite电子听漏仪&#xff1b;DXmic&#xff1b;DXmic-lite等系列。也叫电子地面麦克风,用来放大水从带有压力的自来水管道中泄漏出来产生的…

Go——结构体

Go语言中没有类的概念&#xff0c;也不支持类的继承等面向对象的概念。Go语言中通过结构体的内嵌再配合接口比面向对象具有更高的扩展性和灵活性。 一. 类型别名和自定义类型 1.1 自定义类型 在Go语言中有一些基本的数据类型&#xff0c;如string&#xff0c;整型&#xff0c;…

【随笔】Git -- 常用命令(四)

&#x1f48c; 所属专栏&#xff1a;【Git】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &#x1f496; 欢迎大…

Element

1、Element 基本使用 1.1、Element介绍 Element&#xff1a;网站快速成型工具。是饿了么公司前端开发团队提供的一套基于Vue的网站组件库。 使用Element前提必须要有Vue。 组件&#xff1a;组成网页的部件&#xff0c;例如超链接、按钮、图片、表格等等~ Element官网&#…

python实现图片压缩

首先 pip install Pillow compression_level参数&#xff0c;该参数的范围从0到100&#xff0c;其中0表示最小尺寸&#xff08;最高压缩&#xff09;&#xff0c;100表示最大质量&#xff08;最小压缩&#xff09;。这个脚本将尝试在保持图片可识别性的同时&#xff0c;尽可能…

Java_16 移动零

移动零 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意 &#xff0c;必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: nums [0,1,0,3,12] 输出: [1,3,12,0,0] 示例 2: 输入: nums [0]…

uniapp对接极光推送(国内版以及海外版)

勾选push&#xff0c;但不要勾选unipush 国内版 网址&#xff1a;极光推送-快速集成消息推送功能,提升APP运营效率 (jiguang.cn) 进入后台&#xff0c;并选择对应应用开始配置 配置安卓包名 以及ios推送证书&#xff0c;是否将生产证书用于开发环境选择是 ios推送证书…

如何将python项目转变成deb安装包

先将python项目转变成可执行文件 1. 首先确保你的python项目可以正常执行 2.安装pyinstaller模块&#xff0c;pip install pyinstaller -i Simple Index 3.确定好你的项目的文件入口&#xff0c;也就是运行的文件.py 4. 开始打包成单文件&#xff0c;pyinstaller -F <第…

Maya 2024 for Mac/Win:重塑三维创意世界的利器

在数字化浪潮汹涌的当下&#xff0c;三维图形软件早已成为创意产业不可或缺的重要工具。而在这其中&#xff0c;Maya 2024以其卓越的性能和丰富的功能&#xff0c;赢得了无数设计师的青睐。无论是Mac还是Win平台&#xff0c;Maya 2024都能为您的三维创作提供强大的支持。 Maya…

数据结构-----栈、顺序栈、链栈

在软件应用中&#xff0c;栈这种后进先出数据结构的应用是非常普遍的。比如用浏览器上网时&#xff0c;不管什么浏览器都有一个“后退”键&#xff0c;你点击后可以按访问顺序的逆序加载浏览过的网页。即使从一个网页开始&#xff0c;连续点了几十个链接跳转&#xff0c;你点“…

PyTorch-----torch.nn.Softmax()函数

Softmax原理 Softmax 函数是一种常用的激活函数&#xff0c;通常用于多分类问题中。它将一个含有多个实数值的向量&#xff08;通常称为 logits&#xff09;转换成一个概率分布&#xff0c;使得每个元素都在 (0, 1) 区间内&#xff0c;并且所有元素的和为 1。 假设我们有一个实…