vector类(一)

文章目录

  • vector介绍和使用
    • 1.vector的介绍
    • 2.vector的使用
      • 2.1 vector的定义
      • 2.2 vector iterator的使用
      • 2.3 vector空间增长问题
      • 2.4 vector增删查改
      • 2.5 vector迭代器失效问题
    • 3.vector 在OJ中的使用

vector介绍和使用

1.vector的介绍

  1. vector是表示 可变大小数组的 序列容器

  2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理。

  3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小。为了增加存储空间,其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。

  4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。

  5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。

  6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效,在末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好

2.vector的使用

vector学习时一定要学会查看文档:vector文档介绍,vector在实际中非常的重要,在实际中我们熟悉常

见的接口就可以,下面列出了哪些接口是要重点掌握的

在这里插入图片描述

在这里插入图片描述

2.1 vector的定义

constructor接口说明
vector()(重点)无参构造
vector(size_type n, const value_type& val = value_type())构造并初始化n个val
vector (const vector& x); (重点)拷贝构造
vector (InputIterator first, InputIterator last);使用迭代器进行初始化构造

2.2 vector iterator的使用

iterator的使用接口说明
begin + end(重点)获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置的iterator/const_iterator
rbegin + rend获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的reverse_iterator

2.3 vector空间增长问题

容量空间接口说明
size获取数据个数
capacity获取容量大小
empty判断是否为空
resize(重点)改变vector的size
reserve(重点)改变vector的capacity
  • capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。这个问题经常会考察,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义的。vs是PJ版本STL,g++是SGI版本STL。
  • reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。
  • resize在开空间的同时还会进行初始化,影响size。

2.4 vector增删查改

vector****增删查改接口说明
push_back(重点)尾插
pop_back(重点)尾删
find查找。(注意这个是算法模块实现,不是vector的成员接口)
insert在position之前插入val
erase删除position位置的数据
swap交换两个vector的数据空间
operator[]像数组一样访问(重点)

2.5 vector迭代器失效问题

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。

对于vector可能会导致其迭代器失效的操作有:

  1. 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、push_back等。
#include <iostream>
using namespace std;
#include <vector>int main()
{vector<int> v{ 1,2,3,4,5,6 };auto it = v.begin();v.resize(100, 8); // 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容v.reserve(100); // reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变v.insert(v.begin(), 0); // 插入元素期间,可能会引起扩容,而导致原空间被释放v.push_back(8);v.assign(100, 8); // 给vector重新赋值,可能会引起底层容量改变return 0;
}

以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。

解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。

#include <iostream>
using namespace std;
#include <vector>int main()
{vector<int> v{ 1,2,3,4,5,6 };auto it = v.begin();/*v.resize(100, 8);v.reserve(100);v.insert(v.begin(), 0); v.push_back(8);v.assign(100, 8); */while (it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}
  1. 指定位置元素的删除操作 – erase
#include <iostream>
using namespace std;
#include <vector>int main()
{int a[] = { 1, 2, 3, 4 };vector<int> v(a, a + sizeof(a) / sizeof(int));vector<int>::iterator pos = find(v.begin(), v.end(), 3);  // 使用find查找3所在位置的iteratorv.erase(pos);  // 删除pos位置的数据,导致pos迭代器失效。cout << *pos << endl; // 此处会导致非法访问return 0;
}

在这里插入图片描述

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效.

但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了

因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。

实例:删除vector中所有的偶数

#include <iostream>
using namespace std;
#include <vector>int main()
{vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)it = v.erase(it);else++it;}return 0;
}
  1. 注意:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端。
#include <iostream>
using namespace std;
#include <vector>// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{vector<int> v{ 1,2,3,4,5 };for (size_t i = 0; i < v.size(); ++i)cout << v[i] << " ";cout << endl;auto it = v.begin();cout << "扩容之前,vector的容量为: " << v.capacity() << endl;// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 v.reserve(100);cout << "扩容之后,vector的容量为: " << v.capacity() << endl;// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会// 虽然可能运行,但是输出的结果是不对的while (it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}

vs下:

在这里插入图片描述

linux下:

在这里插入图片描述

但是在linux中, erase删除任意位置代码后,linux下迭代器并没有失效

因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的。

#include <vector>
#include <algorithm>
int main()
{vector<int> v{ 1,2,3,4,5 };vector<int>::iterator it = find(v.begin(), v.end(), 3);v.erase(it);cout << *it << endl;while (it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}/*程序可以正常运行,并打印:
4
4 5 */
  1. 与vector类似,string在插入+扩容操作+erase之后,迭代器也会失效
#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
using namespace std;
#include <string>void TestString()
{string s("hello");auto it = s.begin();// 放开之后代码会崩溃,因为resize到20,string会进行扩容// 扩容之后,it指向之前旧空间已经被释放了,该迭代器就失效了// 后序打印时,再访问it指向的空间程序就会崩溃//s.resize(20, '!');while (it != s.end()){cout << *it;++it;}cout << endl;it = s.begin();while (it != s.end()){it = s.erase(it);// 按照下面方式写,运行时程序会崩溃,因为erase(it)之后// it位置的迭代器就失效了// s.erase(it); ++it;}
}
int main()
{TestString();return 0;
}

迭代器失效解决办法:在使用前,对迭代器重新赋值即可

3.vector 在OJ中的使用

  1. 只出现一次的数字i
class Solution {
public:int singleNumber(vector<int>& nums) {int value = 0;for (auto e : v) { value ^= e; }return value;}
};
  1. 杨辉三角OJ
// 涉及resize / operator[]
// 核心思想:找出杨辉三角的规律,发现每一行头尾都是1,中间第[j]个数等于上一行[j-1]+[j]
class Solution {
public:vector<vector<int>> generate(int numRows) {vector<vector<int>> vv(numRows);for (int i = 0; i < numRows; ++i){vv[i].resize(i + 1, 1);}for (int i = 2; i < numRows; ++i){for (int j = 1; j < i; ++j){vv[i][j] = vv[i - 1][j] + vv[i - 1][j - 1];}}return vv;}
};

总结:通过上面的oj题目,我们发现vector常用的接口更多是插入和遍历。遍历更喜欢用数组operator[i]的形式访问,因为这样便捷。

  1. 删除排序数组中的重复项 OJ

  2. 只出现一次的数ii OJ

  3. 只出现一次的数iii OJ

  4. 数组中出现次数超过一半的数字 OJ

  5. 电话号码字母组合OJ

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/572844.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java面试八股文

【康康要努力】 hello&#xff0c;你好鸭&#xff0c;我是康康&#xff0c;很高兴你能来阅读&#xff0c;昵称是希望自己能不断精进&#xff0c;向着优秀程序员前行! 目前博客主要更新Java系列、数据库、项目案例、计算机基础等知识点。感谢你的阅读和关注&#xff0c;在记录的…

macos下 jupyter服务安装和vscode链接密码设置 .ipynb文件

最近收到了一些后缀为.ipynb的文件&#xff0c; 这个文件就是使用jupyter编辑的&#xff0c;于是就需要安装一个jupyter服务&#xff0c; 对于最新版本的jupyter 网上很多的资料都已经过期了&#xff0c;这里以最新版本的jupyter为例。 jupyter lab安装 jupyter 这个工具包含…

GitHub推送远程仓库详细教程

一、在远程新建一个仓库 二、在工作区初始化并提交到版本库 三、连接到远程仓库地址进行推送 四、推送到其他分支 4.1 新建其他分支 4.2 新建文件进行提交 4.3 将文件推送到其他分支 4.4 推送成功演示 4.5 连接远程跟踪分支&#xff0c;方便提交 4.6 直接push展示 五、其他 5…

R 生存分析3:Cox等比例风险回归及等比例风险检验

虽然Kaplan-Meier分析方法目前应用很广&#xff0c;但是该方法存在一下局限: 对于一些连续型变量&#xff0c;必须分类下可以进行生存率对比 是一种单变量分析&#xff0c;无法同时对多组变量进行分析 是一种非参数分析方法&#xff0c;必须有患者个体数据才能进行分析 英国…

队列+宽搜例题讲解!

429. N 叉树的层序遍历 题目解析&#xff1a; 根据题目分析&#xff0c;可以看出题目要我们求的是N叉数的层序遍历&#xff0c;就是把每层的放在一块&#xff0c;最后把每层都输出出来即可&#xff01; 算法分析&#xff1a; 我们可以利用队列先进先出的特性进行求解&#x…

<QT基础(2)>QScrollArea使用笔记

项目需要设置单个检查的序列图像预览窗口&#xff0c;采用QScrollArea中加入QWidget窗口&#xff0c;每个窗口里面用Qlabel实现图像预览。 过程涉及两部分内容 引入QWidget 引入label插入图像&#xff08;resize&#xff09; 引入布局 组织 scrollArea内部自带Qwidget&#…

ARMday7作业

实现三个按键的中断&#xff0c;现象和代码 do_ipr.c #include "stm32mp1xx_gic.h" #include "stm32mp1xx_exti.h" extern void printf(const char *fmt, ...); unsigned int i 0; void do_irq(void) {//获取要处理的中断的中断号unsigned int irqnoGI…

神经网络:梯度下降法更新模型参数

作者&#xff1a;CSDN _养乐多_ 在神经网络领域&#xff0c;梯度下降是一种核心的优化算法&#xff0c;本文将介绍神经网络中梯度下降法更新参数的公式&#xff0c;并通过实例演示其在模型训练中的应用。通过本博客&#xff0c;读者将能够更好地理解深度学习中的优化算法和损…

SPU赋能PSI:探秘隐私集合求交核心技术与高级调度架构实践

1.SPU实现的PSI介绍 1.PSI的定义和种类 隐私集合求交&#xff08;Private Set Intersection, PSI&#xff09;是一种在密码学和安全多方计算&#xff08;MPC&#xff09;领域中的关键技术&#xff0c;允许两个或多个参与者在不泄露各自输入集合中非交集部分的前提下&#xff…

搭建机器人产业发展重要展示平台“2024南京国际机器人展览会”

2024南京国际智能机器人展览会 2024 Nanjing Intelligent Robot Expo 时间:2024年11月22-24日 地点:南京国际博览中心 南京&#xff0c;这座历史悠久的文化名城&#xff0c;如今正站在机器人产业发展的前沿。随着全球科技的飞速进步&#xff0c;机器人产业已经成为推动经济社…

jupyter lab 自动补全

命令行执行&#xff1a; pip install jupyter-lsp pip install python-lsp-server[all] jupyter lab直接搜索&#xff0c;并安装&#xff0c;重启后生效

开源AI引擎:文本自动分类在公安及消防执法办案自动化中的应用

一、实际案例介绍 通过文本分类算法自动化处理文本数据&#xff0c;快速识别案件性质和关键特征&#xff0c;极大地提高了案件管理和分派的效率。本文将探讨这两种技术如何帮助执法机构优化资源分配&#xff0c;确保案件得到及时而恰当的处理&#xff0c;并增强公共安全管理的…