Python+Django+Yolov5路面墙体桥梁裂缝特征检测识别html网页前后端

程序示例精选
Python+Django+Yolov5路面墙体桥梁裂缝特征检测识别html网页前后端
如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助!

前言

这篇博客针对《Python+Django+Yolov5路面墙体桥梁裂缝特征检测识别html网页前后端》编写代码,代码整洁,规则,易读。 学习与应用推荐首选。


运行结果


文章目录

一、所需工具软件
二、使用步骤
       1. 主要代码
       2. 运行结果
三、在线协助

一、所需工具软件

       1. Python
       2. Django, Yolov5, Pycharm

二、使用步骤

代码如下(示例):

def detect(save_img=False):source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_sizewebcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://'))# Directoriessave_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))  # increment run(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir# Initializeset_logging()device = select_device(opt.device)half = device.type != 'cpu'  # half precision only supported on CUDA# Load modelmodel = attempt_load(weights, map_location=device)  # load FP32 modelstride = int(model.stride.max())  # model strideimgsz = check_img_size(imgsz, s=stride)  # check img_sizeif half:model.half()  # to FP16# Second-stage classifierclassify = Falseif classify:modelc = load_classifier(name='resnet101', n=2)  # initializemodelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()# Set Dataloadervid_path, vid_writer = None, Noneif webcam:view_img = check_imshow()cudnn.benchmark = True  # set True to speed up constant image size inferencedataset = LoadStreams(source, img_size=imgsz, stride=stride)else:save_img = Truedataset = LoadImages(source, img_size=imgsz, stride=stride)# Get names and colorsnames = model.module.names if hasattr(model, 'module') else model.namescolors = [[random.randint(0, 255) for _ in range(3)] for _ in names]# Run inferenceif device.type != 'cpu':model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run oncet0 = time.time()for path, img, im0s, vid_cap in dataset:img = torch.from_numpy(img).to(device)img = img.half() if half else img.float()  # uint8 to fp16/32img /= 255.0  # 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:img = img.unsqueeze(0)# Inferencet1 = time_synchronized()pred = model(img, augment=opt.augment)[0]# Apply NMSpred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)t2 = time_synchronized()# Apply Classifierif classify:pred = apply_classifier(pred, modelc, img, im0s)# Process detectionsfor i, det in enumerate(pred):  # detections per imageif webcam:  # batch_size >= 1p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.countelse:p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)p = Path(p)  # to Pathsave_path = str(save_dir / p.name)  # img.jpgtxt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txts += '%gx%g ' % img.shape[2:]  # print stringgn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwhif len(det):# Rescale boxes from img_size to im0 sizedet[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()# Write resultsfor *xyxy, conf, cls in reversed(det):if save_txt:  # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywhline = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)  # label formatwith open(txt_path + '.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')if save_img or view_img:  # Add bbox to imagelabel = f'{names[int(cls)]} {conf:.2f}'plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)# Print time (inference + NMS)print(f'{s}Done. ({t2 - t1:.3f}s)')# Save results (image with detections)if save_img:if dataset.mode == 'image':cv2.imwrite(save_path, im0)else:  # 'video'if vid_path != save_path:  # new videovid_path = save_pathif isinstance(vid_writer, cv2.VideoWriter):vid_writer.release()  # release previous video writerfourcc = 'mp4v'  # output video codecfps = vid_cap.get(cv2.CAP_PROP_FPS)w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))vid_writer.write(im0)if save_txt or save_img:s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''print(f"Results saved to {save_dir}{s}")print(f'Done. ({time.time() - t0:.3f}s)')print(opt)check_requirements()with torch.no_grad():if opt.update:  # update all models (to fix SourceChangeWarning)for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:detect()strip_optimizer(opt.weights)else:detect()
运行结果

三、在线协助:

如需安装运行环境或远程调试,见文章底部个人 QQ 名片,由专业技术人员远程协助!

1)远程安装运行环境,代码调试
2)Visual Studio, Qt, C++, Python编程语言入门指导
3)界面美化
4)软件制作
5)云服务器申请
6)网站制作

当前文章连接:https://blog.csdn.net/alicema1111/article/details/132666851
个人博客主页:https://blog.csdn.net/alicema1111?type=blog
博主所有文章点这里:https://blog.csdn.net/alicema1111?type=blog

博主推荐:
Python人脸识别考勤打卡系统:
https://blog.csdn.net/alicema1111/article/details/133434445
Python果树水果识别:https://blog.csdn.net/alicema1111/article/details/130862842
Python+Yolov8+Deepsort入口人流量统计:https://blog.csdn.net/alicema1111/article/details/130454430
Python+Qt人脸识别门禁管理系统:https://blog.csdn.net/alicema1111/article/details/130353433
Python+Qt指纹录入识别考勤系统:https://blog.csdn.net/alicema1111/article/details/129338432
Python Yolov5火焰烟雾识别源码分享:https://blog.csdn.net/alicema1111/article/details/128420453
Python+Yolov8路面桥梁墙体裂缝识别:https://blog.csdn.net/alicema1111/article/details/133434445

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/575550.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE小:基于UE5的两种Billboard material(始终朝向相机材质)

本文档展示了两种不同的效果,分别是物体完全朝向相机和物体仅Z轴朝向相机。通过下面的演示和相关代码,您可以更加直观地理解这两种效果的差异和应用场景。 1. 完全朝向相机效果 此效果下,物体将完全面向相机,不论相机在哪个角度…

浏览器工作原理与实践--块级作用域:var缺陷以及为什么要引入let和const

在前面《07 | 变量提升:JavaScript代码是按顺序执行的吗?》这篇文章中,我们已经讲解了JavaScript中变量提升的相关内容,正是由于JavaScript存在变量提升这种特性,从而导致了很多与直觉不符的代码,这也是Jav…

<QT基础(5)>事件监听

事件监听 事件监听(Event Handling)是在程序中监视和响应发生的事件的一种机制。在Qt中,事件监听是一种常见的用于处理用户输入、系统事件以及其他类型事件的方法。通过事件监听,您可以在发生特定事件时捕获事件并执行相应的操作…

状态模式实战运用

目录 前言 UML plantuml 类图 实战代码 Form State Client 前言 通常一个完整的业务流程中,会经历多个阶段,每个阶段即一个业务状态,不同状态下对应这不同的业务处理逻辑。 无脑堆砌 if else 做判断然后选择对应的业务处理其实也能…

Hive-技术补充-ANTLR的真实语法世界

一、上下文 上一篇博客<Hive-技术补充-ANTLR语法编写>&#xff0c;我们了解了如何使用ANTLR语法来表达词法结构和语法结构&#xff0c;下面我们循循渐进的处理身边用过的一些文件或语言&#xff1a; CSV、JSON、DOT、Cymbol、R 二、解析CSV文件 有这样一份csv文件 …

Hadoop面试重点

文章目录 1. Hadoop 常用端口号2.Hadoop特点3.Hadoop1.x、2.x、3.x区别 1. Hadoop 常用端口号 hadoop2.xhadoop3.x访问HDFS 端口500709870访问 MR 执行情况端口80888088历史服务器1988819888客户端访问集群端口90008020 2.Hadoop特点 高可靠&#xff1a;Hadoop底层维护多个数…

移动端开发思考:Uniapp的上位替代选择

文章目录 前言跨平台开发技术需求技术选型uniappFlutterMAUIAvalonia安卓原生 Flutter开发尝试Avalonia开发测试测试项目新建项目代码MainViewMainViewModel 发布/存档 MAUI实战&#xff0c;简单略过打包和Avalonia差不多 总结 前言 作为C# .NET程序员&#xff0c;我有一些移动…

【浅尝C++】使用模板实现泛型编程第一弹=>函数模板/类模板/模板匹配原则/函数模板原理

&#x1f3e0;专栏介绍&#xff1a;浅尝C专栏是用于记录C语法基础、STL及内存剖析等。 &#x1f6a9;一些备注&#xff1a;之前的文章有点杂乱&#xff0c;这里将前面的知识点重新组织了&#xff0c;避免了过多冗余的废话。 &#x1f3af;每日努力一点点&#xff0c;技术变化看…

MoonBit MeetUp回顾——张正、宗喆:编程语言在云原生与区块链领域的技术探索

宗喆和张正分别给我们带了 KCL 相关的最新进展&#xff0c;由蚂蚁集团开发的 Rust 编写的开源 DSL&#xff0c;目标是优化云原生策略配置和用户体验。它通过引入动态配置管理、配置校验和基础设施抽象等核心概念&#xff0c;解决开发者认知负担、配置膨胀和标准化工具缺乏的问题…

京东云0基础搭建帕鲁服务器_4核16G和8核32G幻兽帕鲁专用服务器

使用京东云服务器搭建幻兽帕鲁Palworld游戏联机服务器教程&#xff0c;非常简单&#xff0c;京东云推出幻兽帕鲁镜像系统&#xff0c;镜像直接选择幻兽帕鲁镜像即可一键自动部署&#xff0c;不需要手动操作&#xff0c;真正的新手0基础部署幻兽帕鲁&#xff0c;阿腾云atengyun.…

go的通信Channel

go的通道channel是用于协程之间数据通信的一种方式 一、channel的结构 go源码&#xff1a;GitHub - golang/go: The Go programming language src/runtime/chan.go type hchan struct {qcount uint // total data in the queue 队列中当前元素计数&#xff0c;…

IDEA一键备份MySQL数据库(mysqldump版)

问题 又到了搬MySQL数据库的时刻&#xff0c;这次我不想使用命令行备份&#xff0c;这次我想使用IDEA一键备份MySQL数据库。 解决 假设安装好mysqldump命令后&#xff0c;让IDEA使用mysqldump一键备份指定的数据库。具体IDEA配置如下&#xff1a; 这是IDEA上面的数据库到处…