GTM148 抄书笔记 Part III. (不定期更新)

news/2025/1/29 10:46:01/文章来源:https://www.cnblogs.com/cutx64/p/18692929

上一篇: GTM148 抄书笔记 Part II.

■■■■■■■■■■■■■■■■■■■■■■■■■

Contents

  • Contents
  • Chapter VI. Finite Direct Products
    • The Basic Theorem
    • The Fundamental Theorem of Finite Abelian Groups

Chapter VI. Finite Direct Products

The Basic Theorem

Definition 6.1.1 If a nonabelian group \(G=H\times K\) is a direct product, then \(H\) is called a direct factor of \(G\); in additive notation, one writes \(G=H\oplus K\), and calls \(H\) a (direct) summand of \(G\).

It is easily observed that if \(X\) is a nonempty subset of an abelian group \(G\), then \(\langle X\rangle\) is the set of all linear combinations of elements in \(X\) having coefficients in \(\mathbb Z\).

Definition 6.1.2 If \(G\) is an abelian \(p\)-group for some prime \(p\), then \(G\) is also called a \(p\)-primary group.

Theorem 6.1.3 (Primary Decomposition) Every finite abelian group \(G\) is a direct sum of \(p\)-primary groups.

Remark The theorem is obvious since every abelian group is nilpotent. But here we have a more elementary approach.

Proof

Since \(G\) is finite, it has exponent \(n\) for some \(n\): we have \(nx=\mathbf 0\) for all \(x\in G\). For each prime divisor \(p\) of \(n\), define

\[G_p=\{x\in G:p^ex=\mathbf 0\text{ for some }e\}. \]

Now \(G_p\) is a subgroup of \(G\), for if \(p^nx=\mathbf 0\) and \(p^my=\mathbf 0\), where \(m\le n\), then \(p^n(x-y)=\mathbf 0\). We claim that \(G=\sum G_p\), and we use the criterion in Proposition 2.8.6.

Let \(n=p_1^{e_1}\ldots p_t^{e_t}\), where the \(p_i\) are distinct primes and \(e_i>0\) for all \(i\). Set \(n_i=n/p_i^{e_i}\), and observe that the \(\gcd(n_1,\ldots,n_t)=1\). Then there are integers \(s_i\) with \(\sum s_in_i=1\), and so \(x=\sum(s_in_ix)\). But \(s_in_ix\in G_{p_i}\), because \(p_i^{e_i}s_in_ix=s_inx=\mathbf 0\). Therefore, \(G\) is generated by the family of \(G_p\)'s.

Assume that \(x\in G_p\cap\langle\bigcup_{q\neq p}G_q\rangle\). On the one hand, \(p^ex=\mathbf 0\) for some \(e\ge 0\); on the other hand, \(x=\sum x_q\), where \(q^{e_q}x_q=\mathbf 0\) for exponents \(e_q\). If \(m=\prod q^{e_q}\), then \(m\) and \(p^e\) are relatively prime, and there are integers \(r\) and \(s\) with \(1=rm+sp^{e}\). Therefore, \(x=rmx+sp^{e}x=\mathbf 0\), and so \(G_p\cap\langle U_{q\neq p}G_q\rangle=\mathbf 0\).

Definition 6.1.4 The subgroups \(G_p\) are called the \(p\)-primary components of \(G\).

Definition 6.1.5 A set \(\{x_1,\ldots,x_r\}\) of nonzero elements in an abelian group is independent if, whenever there are integers \(m_1,\ldots,m_r\) with \(\sum_{i=1}^rm_ix_i=\mathbf 0\), then each \(m_ix_i=\mathbf 0\).

Lemma 6.1.6 If \(G\) is an abelian group, then a subset \(\{x_1,\ldots,x_r\}\) of nonzero elements of \(G\) is independent if and only if \(\langle x_1,\ldots,x_r\rangle=\langle x_1\rangle\oplus\cdots\oplus\langle x_r\rangle\).

Proof

Assume independence: if \(y\in\langle x_i\rangle\cap \langle \{x_j:j\neq i\}\rangle\), then there are integers \(m_1,\ldots,m_r\) with \(y=-m_ix_i=\sum_{j\neq i}m_jx_j\), and so \(\sum_{k=1}^rm_kx_k=\mathbf 0\). By independence, \(m_kx_k=\mathbf 0\) for all \(k\); in particular, \(m_ix_i=\mathbf 0\) and so \(y=-m_ix_i=\mathbf 0\). Proposition 2.8.6 now shows that \(\langle x_1,\ldots,x_r\rangle=\langle x_1\rangle\oplus\cdots\oplus\langle x_r\rangle\).

For the converse, assume that \(\sum m_ix_i=\mathbf 0\). For each \(j\), we have \(-m_jx_j=\sum_{k\neq j}m_kx_k\in\langle x_j\rangle\cap\langle\{x_k:k\neq j\}\rangle=\mathbf 0\). Therefore, each \(m_jx_j=\mathbf 0\) and \(\{x_1,\ldots,x_r\}\) is independent.

Corollary 6.1.7 Every finite abelian group \(G\) of prime exponent \(p\) is an elementary abelian \(p\)-group.

Lemma 6.1.8 Let \(\{x_1,\ldots,x_r\}\) be an independent subset of a \(p\)-primary abelian group \(G\).

  1. If \(\{z_1,\ldots,z_r\}\subset G\), where \(pz_i=x_i\) for all \(i\), then \(\{z_1,\ldots,z_r\}\) is independent.
  2. If \(k_1,\ldots,k_r\) are integers with \(k_ix_i\neq\mathbf 0\) for all \(i\), then \(\{k_1x_1,\ldots,k_rx_r\}\) is also independent.

Definition 6.1.9 If \(G\) is an abelian group and \(m>0\) is an integer, then

\[mG=\{mx:x\in G\}. \]

It is easy to see that \(mG\) is a subgroup of \(G\); indeed, since \(G\) is abelian, the function \(\mu_m:G\rightarrow G\), defined by \(x\mapsto mx\), is a homomorphism (called multiplication by \(m\)), and \(mG\) = \(\mathrm{im}\mu_m\). We denote \(\mathrm{ker}\mu_m\) by \(G[m]\); that is,

\[G[m]=\{x\in G:mx=\mathbf 0\}. \]

Theorem 6.1.11 (Basic Theorem) Every finite abelian group \(G\) is a direct sum of primary cyclic groups.

Proof

By Theorem 6.1.3, we may assume that \(G\) is \(p\)-primary for some prime \(p\). We prove the theorem by induction on \(n\), where \(p^nG=\mathbf 0\). If \(n=1\), then the theorem is Corollary 6.1.7.

Suppose that \(p^{n+1}G=\mathbf 0\). If \(H=pG\), then \(p^{n}H=\mathbf 0\), so that induction gives \(H=\sum_{i=1}^r\langle y_i\rangle\). Since \(y_i\in H=pG\), there are \(z_i\in G\) with \(pz_i=y_i\). By Lemma 6.1.6, \(\{y_1,\ldots,y_r\}\) is independent; by Lemma 6.1.8(i) \(\{z_1,\ldots,z_r\}\) is independent, and so \(L=\langle z_1,\ldots,z_r\rangle\) is a direct sum: \(L=\sum_{i=1}^r\langle z_i\rangle\).

For each \(i\), let \(k_i\) be the order of \(y_i\), so that \(k_iz_i\) has order \(p\). The linearly independent subset \(\{k_1z_1,\ldots,k_rz_r\}\) of the vector space \(G[p]\) can be extended to a basis: there are elements \(\{x_1,\ldots,x_s\}\) so that \(\{k_1z_1,\ldots,k_rz_r,x_1,\ldots,x_s\}\) is a basis of \(G[p]\). If \(M=\langle x_1,\ldots,x_s\rangle\), then independence gives \(M=\sum\langle x_j\rangle\). We now show that \(M\) consists of the resurrected summands of order \(p\); that is, \(G=L\oplus M\), and this will complete the proof.

  1. \(L\cap M=\mathbf 0.\quad\) If \(g\in L\cap M\), then \(g=\sum b_iz_i=\sum a_jx_j\). Now \(pg=\mathbf 0\), because \(g\in M\), and so \(\sum pb_iz_i=\mathbf 0\). By independence, \(pb_iz_i=b_iy_i=\mathbf 0\) for all \(i\). It follows that \(b_i=b_i'k_i\) for some \(b_i'\). Therefore, \(\mathbf 0=\sum b_i'k_iz_i-\sum a_jx_j\), and so independence of \(\{k_1z_1,\ldots,k_rz_r,x_1,\ldots,x_s\}\) gives each term \(\mathbf 0\); hence \(g=\sum a_jx_j=\mathbf 0\).
  2. \(L+M=G.\quad\) If \(g\in G\), then \(pg\in pG=H\), and so \(pg=\sum c_iy_i=\sum pc_iz_i\). Hence, \(p(g-\sum c_iz_i)=\mathbf 0\) and \(g-\sum c_iz_i\in G[p]\). Therefore, \(g-\sum c_iz_i=\sum b_ik_iz_i+\sum a_jx_j\), so that \(g=\sum(c_i+b_ik_i)z_i+\sum a_jx_j\in L+M\).

Corollary 6.1.12 Every finite abelian group \(G\) is a direct sum of cyclic groups: \(G=\sum_{i=1}^t\langle x_i\rangle\), where \(x_i\) has order \(m_i\), and

\[m_1\mid m_2\mid\ldots\mid m_t. \]

Proof

Let the primary decomposition of \(G\) be \(G=\sum_{i=1}^r G_{p_i}\). By the basis theorem, we may assume that each \(G_{p_i}\) is a direct sum of cyclic groups; let \(C_i\) be a cyclic summand of \(G_{p_i}\) of largest order, say, \(p_i^{e_i}\). It follows that \(G=K\oplus(C_1\oplus\cdots\oplus C_r)\), where \(K\) is the direct sum of the remaining cyclic summands. But \(C_1\oplus\cdots\oplus C_t\) is cyclic of order \(m=\prod p_i^{e_i}\). Now repeat this construction: let \(K=H\oplus D\), where \(D\) is cyclic of order \(n\), say. If there is a cyclic summand \(S_i\) in \(D\) arising from \(G_{p_i}\), that is, if \(G_{p_i}\neq C_i\), then \(S_i\) has order \(p_i^{f_i}\le p_i^{e_i}\), so that \(p_i^{f_i}\mid p_i^{e_i}\), for all \(i\), and \(n\mid m\). This process ends in a finite number of steps.

Definition 6.1.13 If \(G\) has a decomposition as a direct sum \(G=\sum C_i\), where \(C_i\) is cyclic of order \(m_i\) and \(m_1\mid m_2\mid \ldots\mid m_t\), then one says that \(G\) has invariant factors \((m_1,\ldots,m_t)\).

It is obvious that if \(G\) is an abelian group with invariant factors \((m_1,\ldots,m_t)\), then the order of \(G\) is \(\prod m_i\) and the minimal exponent of \(G\) is \(m_t\).

Proposition 6.1.14 If \(G\) is a finite \(p\)-primary abelian group, and if \(x\in G\) has largest order, then \(\langle x\rangle\) is a direct summand of \(G\).

Proposition 6.1.15 If \(p\) is an odd prime, the multiplicative group

\[\mathrm U(\mathbb Z_{p^n})=\{[a]\in\mathbb Z_{p^n}:(a,p)=1\}, \]

is cyclic of order \((p-1)p^{n-1}\).

Proposition 6.1.16 Let \(G\) be a finite \(p\)-primary group and \(\mathrm d(G)\) be the minimal number of generators of \(G\), then:

  1. \(\Phi(G)=pG\), and \(\mathrm d(G)=\dim G/pG\);
  2. If \(G\) and \(H\) are elementary abelian \(p\)-groups, then \(\mathrm d(G\oplus H)=\mathrm d(G)+\mathrm d(H)\);
  3. Let \(G\) be a direct sum of \(b\) cyclic groups of order \(p^m\). If \(n< m\), then \(p^nG/p^{n+1}G\) is elementary and \(\mathrm d(p^nG/p^{n+1}G)=b\).

The Fundamental Theorem of Finite Abelian Groups

Lemma 6.2.1 If a \(p\)-primary abelian group \(G\) has a decomposition \(G=\sum C_i\) into a direct sum of cyclic groups, then the number of \(C_i\) having order \(\ge p^{n+1}\) is \(\mathrm d(p^nG/p^{n+1}G)\), the minimal number of generators of \(p^nG/p^{n+1}G\).

Proof

Let \(B_k\) be the direct sum of all \(C_i\), if any, of order \(p^k\); say, there are \(b_k\ge 0\) such summands in \(B_k\). Thus,

\[G=B_1\oplus\cdots\oplus B_t. \]

Now \(p^nG=p^nB_{n+1}\oplus\cdots\oplus p^nB_t\), because \(p^nB_1=\cdots=p^nB_n=\mathbf 0\), and \(p^{n+1}G=p^{n+1}B_{n+2}\oplus\cdots\oplus p^{n+1}B_t\). Therefore, \(p^nG/p^{n+1}G\cong p^nB_{n+1}\oplus(p^nB_{n+2}/p^{n+1}B_{n+2})\oplus\cdots\oplus(p^nB_t/p^{n+1}B_t)\), and so Proposition 6.1.16 gives \(\mathrm d(p^nG/p^{n+1}G)=b_{n+1}+b_{n+2}+\cdots+b_t\).

Definition 6.2.2 If \(G\) is a finite \(p\)-primary abelian group and \(n\ge 0\), then

\[\mathrm U_p(n,G)=\mathrm d(p^{n}G/p^{n+1}G)-\mathrm d(p^{n+1}G/p^{n+2}G). \]

Theorem 6.2.3 If \(G\) is a finite \(p\)-primary abelian group, then any two decompositions of \(G\) into direct sums of cyclic groups have the same number of summands of each kind. More precisely, for every \(n\ge 0\), the number of cyclic summands of order \(p^{n+1}\) is \(\mathrm U_p(n,G)\).

Proof

For any decomposition of \(G\) into a direct sum of cyclic groups, the lemma shows that there are exactly \(\mathrm U_p(n,G)\) cyclic summands of order \(p^{n+1}\). The result follows, for \(\mathrm U_p(n,G)\) does not depend on the choice of decomposition.

Corollary 6.2.4 If \(G\) and \(H\) are finite \(p\)-primary abelian groups, then \(G\cong H\) if and only if \(\mathrm U_p(n,G)=\mathrm U_p(n,H)\) for all \(n\ge 0\).

If \(\varphi\!:G\rightarrow H\) is an isomorphism, then \(\varphi(p^nG)=p^nH\) for all \(n\ge 0\), and so \(\varphi\) includes isomorphisms \(p^nG/p^{n+1}G\cong p^nH/p^{n+1}H\) for all \(n\). Therefore, \(\mathrm U_p(n,G)=\mathrm U_p(n,H)\) for all \(n\).

Conversely, if \(G\) and \(H\) each have direct sum decompositions into cyclic groups with the same number of summands of each kind, then it is easy to construct an isomorphism \(G\rightarrow H\).

Proposition 6.2.5 If \(G\) and \(H\) are finite abelian groups, then

\[\mathrm U_p(n,G\oplus H)=\mathrm U_p(n,G)+\mathrm U_p(n,H). \]

Proposition 6.2.6

  1. If \(A,B\) and \(C\) are finite abelian groups with \(A\oplus C\cong B\oplus C\), then \(A\cong B\).
  2. If \(A\) and \(B\) are finite abelian groups for which \(A\oplus A\cong B\oplus B\), then \(A\cong B\).

Definition 6.2.7 The orders of the primary cyclic summands of \(G\), that is, the numbers \(p^{n+1}\) with multiplicity \(\mathrm U_p(n,G)>0\) for all primes \(p\) and all \(n\ge 0\), are called the elementary divisors of \(G\).

Example 6.2.8 Let \(G=\mathbb Z_2\oplus \mathbb Z_2\oplus\mathbb Z_2\oplus \mathbb Z_4\oplus \mathbb Z_3\oplus \mathbb Z_9\), then the elementary divisors of \(G\) are \(\{2,2,2,4;3,9\}\), while the invariant factors of \(G\) are \(\{2,2,6,36\}\).

Theorem 6.2.9 (Fundamental Theorem of Finite Abelian Groups) If \(G\) and \(H\) are finite abelian groups, then \(G\cong H\) if and only if, for all primes \(p\), they have the same elementary divisors.

Corollary 6.2.10 Let \(G\) be a finite abelian group.

  1. If \(G\) has invariant factors \((m_1,\ldots,m_t)\) and invariant factors \((k_1,\ldots,k_s)\), then \(s=t\) and \(k_i=m_i\) for all \(i\).
  2. Two finite abelian groups \(G\) and \(H\) are isomorphic if and only if they have the same invariant factors.

Proposition 6.2.11 The number of nonisomorphic abelian groups of order \(n=\prod p_i^{e_i}\) is \(\prod_i\mathscr P(e_i)\), where the \(p_i\) are distinct primes and the \(e_i\) are positive integers, and \(\mathscr P(e)\) denotes the number of partitions of \(e\).

Proposition 6.2.12 If \(G\) is a finite abelian group and \(H\le G\), then \(G\) contains a subgroups isomorphic to \(G/H\).

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/876366.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

常见的7种排序算法(转载)

本文介绍了七种常见的排序算法:冒泡排序、选择排序、插入排序、希尔排序、快速排序、归并排序和堆排序。每种算法通过具体步骤和代码实现进行详细讲解,包括时间复杂度分析。文中提供了丰富的示例代码和图解,帮助读者更好地理解各排序算法的工作原理及应用场景。【版权声明】…

【MySQL】MySQL为什么 不用 Docker部署?

MySQL为什么不推荐使用Docker部署 docker可以从远程仓库拉取镜像然后通过镜像快速的部署应用,非常的方便快捷, 但是 , 为什么 一般公司的 Mysql 不用docker部署,而是部署在 物理机器上呢? 一、DB有状态,不方便扩容1.1 Docker容器的两大类型: 有状态 、无状态的区分1.2 My…

RocketMQ实战—1.订单系统面临的技术挑战

大纲 1.一个订单系统的整体架构、业务流程及负载情况 2.订单系统面临的技术问题一:下订单的同时还要发券、发红包、Push推送等导致性能太差 3.订单系统面临的技术问题二:订单退款时经常流程失败导致无法完成退款 4.订单系统面临的技术问题三:第三方客户系统的对接耦合性太高…

【docker】自建 docker 镜像加速

1. 背景 由于神秘原因,国内用户逐渐无法访问 Docker Hub 仓库。这对于开发者来说是个不小的难题。而这个解决方案是通过赛博菩萨 cloudflare(简称 CF)中转请求,解决访问限制并加速访问。刚好之前分享了如何获取免费域名,今天就来分享一下如何用免费域名在CF部署自己的 doc…

hive--MySQL8错误--ERROR 1410 (42000): You are not allowed to create a user with GRANT

错误展示:解决办法: create user hadoopguide@localhost identified by hadoopguide; grant all privileges on hadoopguide.* to hadoopguide@localhost with grant option; 效果图:错误原因: MySQL 8.0 及以上版本不允许在授予权限时隐式创建用户。所以显式创建用户后再授…

【Linux】Linux一键切换镜像源,告别慢速下载,国内镜像让你飞起来!

简介 本文教你如何通过一键切换 Linux 镜像源,快速提高系统软件包的下载速度,告别“慢”的困扰,轻松提升体验。 项目地址:https://github.com/SuperManito/LinuxMirrors 官方文档:https://linuxmirrors.cn/开头 Linux 系统在安装和更新软件时,经常会遇到速度慢的问题,尤…

day05-面向对象编程:基础语法

Java面向对象:类的基础语法[ 任务列表 ] 1.面向对象快速入门 2.什么是面向对象 3.类的基础语法——构造器 4.类的基础语法——this关键字 5.类的基础语法——封装 6.类的基础语法——javabean 7.类的基础语法——static 8.其他———————————————————————…

【docker】通过Docker一键部署群晖NAS!支持自定义内存和CPU、多磁盘挂载、KVM加速!

声明 文中所涉及的技术、思路和工具仅供以学习交流使用,任何人不得将其用于非法用途以及盈利等目的,否则后果自行承担。如有需要,请购买正版软件。今天给大家介绍一个开源项目,让你能够在Linux或者Window11上通过Docker部署群晖NAS,支持多磁盘挂载、KVM加速等等,让你享受…

渗透测试速成

123123321渗透测试速成 主动信息收集 MSF渗透 python反弹一个交互式shell MySQL基础:登录,增删改查.. 框架识别利用:whatweb 信息收集速通 直接arp-scan -l,快速找到IP地址 然后,nmap -A ip+子网掩码,进行全面扫描 探测目标IP地址: 探测主机:arp-scan -l(推荐) 探测当…

Spring AI 提交 PR 实战指南:避免常见坑

今天,我们将简单地了解如何向 Spring AI 提交 PR(Pull Request)。在这个过程中,有一些常见的坑需要大家注意和避免,特别是在 Git 操作方面。我们会重点关注提交信息的规范,如何进行一次合并提交,以及其他在代码质量和结构上需要遵守的要求。 最后,我们会快速回顾一下与…

第一个java程序,HelloWorld

第一个java程序,HelloWorld创建一个java程序后缀名为java编写代码 public class Hello {public static void main (String[] args) {System.out.println("HelloWorld");} }编译 javac java文件 ,会生成一个class文件运行Java文件,java class文件

[Jest] 整合 webpack 综合练习

这一小节,我们来做一个综合的练习,该练习会整合:typescript webpack jest准备工作 首先创建项目目录,通过 npm init -y 进行初始化。 整个项目我们打算使用 typescript 进行开发,因此需要安装 typescript npm i typescript -D然后通过 npx tsc --init 创建 ts 的配置文件,…