Redis中的LRU算法分析

LRU算法

概述

Redis作为缓存使用时,一些场景下要考虑内容的空间消耗问题。Redis会删除过期键以释放空间,过期键的删除策略
有两种:

  • 1.惰性删除:每次从键空间中获取键时,都检查取得的键是否过期,如果过期的话,就删除该键;如果没有过期,就返回该键。
  • 2.定期删除:每隔一段事件,程序就对数据库进行一次检查,删除里面的过期键。
    Redis也可以开启LRU功能来自动淘汰一些键值对。

例子

~~~~~A~~~~~A~~~~~A~~~~A~~~~~A~~~~~A~~|
~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~~B~|
~~~~~~~~~~C~~~~~~~~~C~~~~~~~~~C~~~~~~|
~~~~~D~~~~~~~~~~D~~~~~~~~~D~~~~~~~~~D|

举个例子,图中的A每隔5s访问一次,B每2s访问一次,C与D每10s访问一次,| 代表计算空闲时间的截止点。可以看到,LRU对ABC工作的很好,完美预测了将来被访问到的概率B>A>C,但对于D却预测了最少的空闲时间,但总体来说,LRU算法已经是一个性能足够好的算法了

LRU配置参数。

Redis配置中和LRU有关的有三个:

  • 1.maxmemory:配置Redis存储数据时指定限制的内存大小,比如100m。当缓存消耗的内存超过这个数值时,将触发数据淘汰。该数据配置为0时,表示缓存的数据量没有限制,即LRU功能不生效。64位的系统默认值为0,32位的系统默认内存限制为3GB
  • 2.maxmemory_policy:触发数据淘汰后的淘汰策略
  • 3.maxmemory_samples:随机采样的精度,也就是随机取出key的数目。该数值配置越大,越接近真实的LRU算法,但是数值越大,相应消耗也变高,对性能有一定影响,样本值默认为5.

淘汰策略

淘汰策略即maxmemory_policy的赋值有以下几种:

  • 1.noeviction:如果缓存数据超过了maxmemory限定值,并且客户端正在执行的命令(大部分的写入指令,但DEL和几个指令例外)会导致内存分配,则向客户端返回错误相应
  • 2.allkeys-lru:对所有的键都采取LRU淘汰
  • 3.volatile-lru:仅对设置了过期时间的键采取LRU淘汰
  • 4.allkeys-random:随机回收所有的键
  • 5.volatile-random:随机回收设置过期时间的键
  • 6.volatile-ttl:仅淘汰设置了过期时间的键—淘汰生存时间TTL(Time To Live)更小的键
  • volatile-lru,volatile-random和volatile-ttl这三个淘汰策略使用的不是全量数据,有可能无法淘汰出足够的内存空间,在没有过期键或者没有设置超时属性的键的情况下,这三种策略和noeviction差不多。
    一般的经验规则:
  • 1.使用allkeys-lru策略:当预期请求符合一个幂次分布(二八法则等),比如一部分的子集元素比其他元素被访问的更多时,可以选择
    这个策略
  • 2.使用allkeys-random:循环连续的访问所有的键时,或者与其请求分布平均(所有元素被访问的概率都差不多)
  • 3.使用volatile-ttl:要采取这个策略,缓存对象的TTL值最好有差异

volatile-lru和volatile-random策略,当你想要使用单一的Redis实例来同时实现缓存淘汰和持久化一些经常使用的键集合时很有用。未设置过期时间的键进行持久化保存,设置了过期时间的键参与缓存淘汰。不过一般运行两个实例是解决这个问题的更好办法

为键设置过期时间是需要消耗内存的,,所以使用allkeys-lru这种策略更加节省空间,因为这种策略可以不为键设置过期时间。

近似LRU算法

我们知道,LRU算法需要一个双向链表来记录数据的最近被访问顺序,但是处于节省内存的考虑,Redis的LRU算法并非完整的实现。
Redis并不会选择最久未被访问的键进行回收,相反它会尝试运行一个近似LRU的算法,通过对少量键进行取样,然后回收其中最久未被
访问的键,通过调整每次回收的采样杨数量maxmemory-samples,可以实现调整算法的精度。根据Redis作者的说法,每个RedisObject
可以挤出24bits,但24bits是不够存储两个指针的,而存储一个低位时间戳是足够的,RedisObject以秒为单位存储了对象新建或者更新时的
unix time,也就是LRU clock,24bits 能表示的最大数值为2^24-1,即16777215秒,16777215 / 86400(一天的秒数) = 194.56 ,因此得出
最长的时间跨度是约194天而缓存的数据更新非常频繁,已经足够了。
Redis的键空间是放在一个哈希表中的,要从所有的键中选出一个最久未被访问的键,需要另外一个数据结构存储这些源信息,这显然不划算,
最初,Redis只是随机的选3个key,然后从中淘汰,后来算法改进到了N个key,默认是5个。Redis3.0之后又改善了算法的性能,会提供一个
待淘汰候选key的pool,里面默认有16个key,按照空闲事件排好序。更新时从Redis键空间随机选择N个key,分别计算它们的空闲事件idle,
key只会在pool不满或者空闲时间大于pool里最小的时候,才会进入pool,然后从pool中选择空闲时间最大的key淘汰掉。

真实LRU算法与近似LRU的算法可以通过下面的图像对比

在这里插入图片描述

浅灰色是已经被淘汰的对象,灰色带是没有被淘汰的对象。可以看出,maxmemory-samples值为5时,
Redis3.0效果要比Redis2.0要好,使用10个采样大小的Redis3.0的近似LRU算法已经非常接近理论的性能,
数据访问模式非常接近幂次分布时,也就是大部分的访问集中于部分键时,LRU近似算法会处理得很好。
在模拟实验的过程中,我们发现如果使用幂次分布的访问模式,真实LRU算法和近似LRU算法几乎没有差别

LRU源码分析

Redis中的键与值都是redisObject对象

typedef struct redisObject {// 4位unsigned type:4;// 4位unsigned encoding:4;// 24位// LRU time (相对于全局的lru_clock) or// LFU data(低8位是频率,高16位是访问时间)unsigned lru:LRU_BITS; // 4个字节 32位int refcount;// 8个字节 64位void *ptr;
} robj;

unsigned的低24bits的lru记录了 redisObj的LRU time

Redis命令访问缓存的数据,均会调用函数的lookupkey:

robj *lookupKey(redisDb *db, robj *key, int flags) {dictEntry *de = dictFind(db->dict,key->ptr);if (de) {robj *val = dictGetVal(de);/* Update the access time for the ageing algorithm.* Don't do it if we have a saving child, as this will trigger* a copy on write madness. */if (server.rdb_child_pid == -1 &&server.aof_child_pid == -1 &&!(flags & LOOKUP_NOTOUCH)){if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {updateLFU(val);} else {val->lru = LRU_CLOCK();}}return val;} else {return NULL;}
}

该函数在策略为LRU(非LFU)时会更新对象的lru值,设置为LRU_CLOCK()值:

/* Return the LRU clock, based on the clock resolution. This is a time* in a reduced-bits format that can be used to set and check the* object->lru field of redisObject structures. */
unsigned int getLRUClock(void) {return (mstime()/LRU_CLOCK_RESOLUTION) & LRU_CLOCK_MAX;
}/* This function is used to obtain the current LRU clock.* If the current resolution is lower than the frequency we refresh the* LRU clock (as it should be in production servers) we return the* precomputed value, otherwise we need to resort to a system call. */
unsigned int LRU_CLOCK(void) {unsigned int lruclock;if (1000/server.hz <= LRU_CLOCK_RESOLUTION) {atomicGet(server.lruclock,lruclock);} else {lruclock = getLRUClock();}return lruclock;
}

LRU_CLOCK():取决于LRU_CLOCK_RESOLUTION(默认值1000),LRU_CLOCK_RESOLUTION代表了LRU算法的精度,即一个LRU的单位是多长。server.hz代表服务器刷新的频率,如果服务器的时间更新精度比LRU的精度值要小,LRU_CLOCK()直接使用服务器的时间,减少开销。

freeMemoryIfNeededAndSafe函数

源码如下

int freeMemoryIfNeeded(void) {/* By default replicas should ignore maxmemory* and just be masters exact copies. */if (server.masterhost && server.repl_slave_ignore_maxmemory) return C_OK;size_t mem_reported, mem_tofree, mem_freed;mstime_t latency, eviction_latency;long long delta;int slaves = listLength(server.slaves);/* When clients are paused the dataset should be static not just from the* POV of clients not being able to write, but also from the POV of* expires and evictions of keys not being performed. */if (clientsArePaused()) return C_OK;if (getMaxmemoryState(&mem_reported,NULL,&mem_tofree,NULL) == C_OK)return C_OK;mem_freed = 0;if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)goto cant_free; /* We need to free memory, but policy forbids. */latencyStartMonitor(latency);while (mem_freed < mem_tofree) {int j, k, i, keys_freed = 0;static unsigned int next_db = 0;sds bestkey = NULL;int bestdbid;redisDb *db;dict *dict;dictEntry *de;if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL){struct evictionPoolEntry *pool = EvictionPoolLRU;while(bestkey == NULL) {unsigned long total_keys = 0, keys;/* We don't want to make local-db choices when expiring keys,* so to start populate the eviction pool sampling keys from* every DB. */for (i = 0; i < server.dbnum; i++) {db = server.db+i;dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?db->dict : db->expires;if ((keys = dictSize(dict)) != 0) {evictionPoolPopulate(i, dict, db->dict, pool);total_keys += keys;}}if (!total_keys) break; /* No keys to evict. *//* Go backward from best to worst element to evict. */for (k = EVPOOL_SIZE-1; k >= 0; k--) {if (pool[k].key == NULL) continue;bestdbid = pool[k].dbid;if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {de = dictFind(server.db[pool[k].dbid].dict,pool[k].key);} else {de = dictFind(server.db[pool[k].dbid].expires,pool[k].key);}/* Remove the entry from the pool. */if (pool[k].key != pool[k].cached)sdsfree(pool[k].key);pool[k].key = NULL;pool[k].idle = 0;/* If the key exists, is our pick. Otherwise it is* a ghost and we need to try the next element. */if (de) {bestkey = dictGetKey(de);break;} else {/* Ghost... Iterate again. */}}}}/* volatile-random and allkeys-random policy */// .../* Finally remove the selected key. */if (bestkey) {db = server.db+bestdbid;robj *keyobj = createStringObject(bestkey,sdslen(bestkey));propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);/* We compute the amount of memory freed by db*Delete() alone.* It is possible that actually the memory needed to propagate* the DEL in AOF and replication link is greater than the one* we are freeing removing the key, but we can't account for* that otherwise we would never exit the loop.** AOF and Output buffer memory will be freed eventually so* we only care about memory used by the key space. */delta = (long long) zmalloc_used_memory();latencyStartMonitor(eviction_latency);if (server.lazyfree_lazy_eviction)dbAsyncDelete(db,keyobj);elsedbSyncDelete(db,keyobj);latencyEndMonitor(eviction_latency);latencyAddSampleIfNeeded("eviction-del",eviction_latency);latencyRemoveNestedEvent(latency,eviction_latency);delta -= (long long) zmalloc_used_memory();mem_freed += delta;server.stat_evictedkeys++;notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",keyobj, db->id);decrRefCount(keyobj);keys_freed++;/* When the memory to free starts to be big enough, we may* start spending so much time here that is impossible to* deliver data to the slaves fast enough, so we force the* transmission here inside the loop. */if (slaves) flushSlavesOutputBuffers();/* Normally our stop condition is the ability to release* a fixed, pre-computed amount of memory. However when we* are deleting objects in another thread, it's better to* check, from time to time, if we already reached our target* memory, since the "mem_freed" amount is computed only* across the dbAsyncDelete() call, while the thread can* release the memory all the time. */if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) {if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) {/* Let's satisfy our stop condition. */mem_freed = mem_tofree;}}}if (!keys_freed) {latencyEndMonitor(latency);latencyAddSampleIfNeeded("eviction-cycle",latency);goto cant_free; /* nothing to free... */}}latencyEndMonitor(latency);latencyAddSampleIfNeeded("eviction-cycle",latency);return C_OK;cant_free:/* We are here if we are not able to reclaim memory. There is only one* last thing we can try: check if the lazyfree thread has jobs in queue* and wait... */while(bioPendingJobsOfType(BIO_LAZY_FREE)) {if (((mem_reported - zmalloc_used_memory()) + mem_freed) >= mem_tofree)break;usleep(1000);}return C_ERR;
}/* This is a wrapper for freeMemoryIfNeeded() that only really calls the* function if right now there are the conditions to do so safely:** - There must be no script in timeout condition.* - Nor we are loading data right now.**/
int freeMemoryIfNeededAndSafe(void) {if (server.lua_timedout || server.loading) return C_OK;return freeMemoryIfNeeded();
}

freeMemoryIfNeededAndSafe()为释放内存的函数,
几种淘汰策略maxmemory_policy就是在这个函数里面实现的。当采用LRU时,可以看到,从0号数据库开始(默认16个)根据不同的策略,选择redisDb的dict(全部键)或者expires(有过期时间的键),,用来更新候选键池子pool,pool更新策略是evictionPoolPopulate()

evictionPoolPopulate函数

evictionPoolPopulate函数
```c++
void evictionPoolPopulate(int dbid, dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {int j, k, count;dictEntry *samples[server.maxmemory_samples];count = dictGetSomeKeys(sampledict,samples,server.maxmemory_samples);for (j = 0; j < count; j++) {unsigned long long idle;sds key;robj *o;dictEntry *de;de = samples[j];key = dictGetKey(de);/* If the dictionary we are sampling from is not the main* dictionary (but the expires one) we need to lookup the key* again in the key dictionary to obtain the value object. */if (server.maxmemory_policy != MAXMEMORY_VOLATILE_TTL) {if (sampledict != keydict) de = dictFind(keydict, key);o = dictGetVal(de);}/* Calculate the idle time according to the policy. This is called* idle just because the code initially handled LRU, but is in fact* just a score where an higher score means better candidate. */if (server.maxmemory_policy & MAXMEMORY_FLAG_LRU) {idle = estimateObjectIdleTime(o);} else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {/* When we use an LRU policy, we sort the keys by idle time* so that we expire keys starting from greater idle time.* However when the policy is an LFU one, we have a frequency* estimation, and we want to evict keys with lower frequency* first. So inside the pool we put objects using the inverted* frequency subtracting the actual frequency to the maximum* frequency of 255. */idle = 255-LFUDecrAndReturn(o);} else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) {/* In this case the sooner the expire the better. */idle = ULLONG_MAX - (long)dictGetVal(de);} else {serverPanic("Unknown eviction policy in evictionPoolPopulate()");}/* Insert the element inside the pool.* First, find the first empty bucket or the first populated* bucket that has an idle time smaller than our idle time. */k = 0;while (k < EVPOOL_SIZE &&pool[k].key &&pool[k].idle < idle) k++;if (k == 0 && pool[EVPOOL_SIZE-1].key != NULL) {/* Can't insert if the element is < the worst element we have* and there are no empty buckets. */continue;} else if (k < EVPOOL_SIZE && pool[k].key == NULL) {/* Inserting into empty position. No setup needed before insert. */} else {/* Inserting in the middle. Now k points to the first element* greater than the element to insert.  */if (pool[EVPOOL_SIZE-1].key == NULL) {/* Free space on the right? Insert at k shifting* all the elements from k to end to the right. *//* Save SDS before overwriting. */sds cached = pool[EVPOOL_SIZE-1].cached;memmove(pool+k+1,pool+k,sizeof(pool[0])*(EVPOOL_SIZE-k-1));pool[k].cached = cached;} else {/* No free space on right? Insert at k-1 */k--;/* Shift all elements on the left of k (included) to the* left, so we discard the element with smaller idle time. */sds cached = pool[0].cached; /* Save SDS before overwriting. */if (pool[0].key != pool[0].cached) sdsfree(pool[0].key);memmove(pool,pool+1,sizeof(pool[0])*k);pool[k].cached = cached;}}/* Try to reuse the cached SDS string allocated in the pool entry,* because allocating and deallocating this object is costly* (according to the profiler, not my fantasy. Remember:* premature optimizbla bla bla bla. */int klen = sdslen(key);if (klen > EVPOOL_CACHED_SDS_SIZE) {pool[k].key = sdsdup(key);} else {memcpy(pool[k].cached,key,klen+1);sdssetlen(pool[k].cached,klen);pool[k].key = pool[k].cached;}pool[k].idle = idle;pool[k].dbid = dbid;}
}

Redis随机选择maxmemory_samples数量的key,然后计算这些key的空闲时间idle time,当满足条件时(比pool中的某些
键的空闲时间还大)就可以进pool。pool更新之后,就淘汰pool中空闲时间最大的键
estimateObjectIdleTime用来计算Redis对象的空闲时间:

/* Given an object returns the min number of milliseconds the object was never* requested, using an approximated LRU algorithm. */
unsigned long long estimateObjectIdleTime(robj *o) {unsigned long long lruclock = LRU_CLOCK();if (lruclock >= o->lru) {return (lruclock - o->lru) * LRU_CLOCK_RESOLUTION;} else {return (lruclock + (LRU_CLOCK_MAX - o->lru)) *LRU_CLOCK_RESOLUTION;}
}

空闲时间基本就是对象的lru和全局的LRU_CLOCK()的差值乘以精度LRU_CLOCK_RESOLUTION,将秒转化为了毫秒

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/575890.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】内存函数(memcpy)的使用和模拟实现

目录 一、memcpy定义1.memcpy在**cplusplus**中的定义2.memcpy**复制内存块**3.参数a.目的地b.源c.数字 4.函数返回值5.函数头文件 二、memcpy的使用使用memcpy()函数完成拷贝整型数组数据 三、memcpy的模拟实现思路代码 一、memcpy定义 1.memcpy在cplusplus中的定义 链接: l…

MySQL的主从复制与读写分离

在实际的生产环境中&#xff0c;对数据库的读和写都在同一个数据库服务器中&#xff0c;是不能满足实际需求的。无论是在安全性、高可用性还是高并发等各个方面都是完全不能满足实际需求的。因此&#xff0c;通过主从复制的方式来同步数据&#xff0c;再通过读写分离来提升数据…

分享react+three.js展示温湿度采集终端

前言 气象站将采集到的相关气象数据通过GPRS/3G/4G无线网络发送到气象站监测中心&#xff0c;摆脱了地理空间的限制。 前端&#xff1a;气象站主机将采集好的气象数据存储到本地&#xff0c;通过RS485等线路与GPRS/3G/4G无线设备相连。 通信&#xff1a;GPRS/3G/4G无线设备通…

Android room 在dao中不能使用挂起suspend 否则会报错

错误&#xff1a; Type of the parameter must be a class annotated with Entity or a collection/array of it. kotlin.coroutines.Continuation<? super kotlin.Unit> $completion); 首先大家检查一下几个点 一、kotlin-kapt 二、 是否引入了 room-ktx 我是2024年…

java电话号码的字母组合(力扣Leetcode17)

电话号码的字母组合 力扣原题链接 问题描述 给定一个仅包含数字 2-9 的字符串&#xff0c;返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下&#xff08;与电话按键相同&#xff09;。注意 1 不对应任何字母。 示例 示例 1&#xff1a;…

人工智能(pytorch)搭建模型26-基于pytorch搭建胶囊模型(CapsNet)的实践,CapsNet模型结构介绍

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下人工智能(pytorch)搭建模型26-基于pytorch搭建胶囊模型(CapsNet)的实践&#xff0c;CapsNet模型结构介绍。CapsNet&#xff08;Capsule Network&#xff09;是一种创新的深度学习模型&#xff0c;由计算机科学家Geo…

React 应用实现监控可观测性最佳实践

前言 React 是一个用于构建用户界面的 JavaScript 框架。它采用了虚拟 DOM 和 JSX&#xff0c;提供了一种声明式的、组件化的编程模型&#xff0c;以便更高效地构建用户界面。无论是简单还是复杂的界面&#xff0c;React 都可以胜任。 YApi 是使用 React 编写的高效、易用、功…

Linux学习:进程(3)与 环境变量

目录 1. 进程的优先级1.1 什么是进程的优先级1.2 优先级的具体表示与查看方式 2. 进程的切换与调度2.1 切换2.2 调度 3. 环境变量3.1 main参数/命令行参数3.2 什么是环境变量3.3 环境变量的使用与特性3.5 本地变量与环境变量的脚本配置文件 1. 进程的优先级 在计算机运行的过程…

江协科技STM32:按键控制LED光敏传感器控制蜂鸣器

按键控制LED LED模块 左上角PA0用上拉输入模式&#xff0c;如果此时引脚悬空&#xff0c;PA0就是高电平&#xff0c;这种方式下&#xff0c;按下按键&#xff0c;引脚为低电平&#xff0c;松下按键&#xff0c;引脚为高电平 右上角PA0&#xff0c;把上拉电阻想象成弹簧 当按键…

nacos的各种类型的配置文件 yml 、json、 Properties、 text 等文件类型 发生变化怎么热更新,实现实时监听nacos配置文件变化

本文用的是 Nacos作为配置中心注册监听器方法 实现热更新 nacos 配置文件 从而不用重启项目 依赖、工具类 这边就不写了 因为项目用的是 Json 类型的配置文件 所以下文 主要是对json文件进行实现 别的文件大同小异 先说扯淡的东西 在nacos 的配置文件中 dataId 这两种声明 是…

深度学习语义分割篇——DeepLabV2原理详解篇

&#x1f34a;作者简介&#xff1a;秃头小苏&#xff0c;致力于用最通俗的语言描述问题 &#x1f34a;专栏推荐&#xff1a;深度学习网络原理与实战 &#x1f34a;近期目标&#xff1a;写好专栏的每一篇文章 &#x1f34a;支持小苏&#xff1a;点赞&#x1f44d;&#x1f3fc;、…

opencv 十九 python下实现多线程间rtsp直播流的复用

在多线程拉流的任务场景中&#xff0c;有时需要将一个rtsp拉取多次&#xff0c;每重新打开一次rtsp视频流就要多消耗一次带宽&#xff0c;为此基于类的静态对象实现rtsp视频流的复用。 1、实现代码 import threading import cv2,time #接收摄影机串流影像&#xff0c;采用多线…