深度学习每周学习总结P3(天气识别)

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

数据链接
提取码:o3ix

目录

    • 0. 总结
    • 1. 数据导入部分
      • 数据导入部分代码详解:
        • a. 数据读取部分
          • a.1 提问:关于这段代码,我想知道为什么split函数中用以分割的是"\\"符号而不是"/"
          • a.2 提问2:可以为我介绍一下pathlib的.parts和.name方法吗
        • b. 用列表推导式加载和显示图像代码的逐行解释:
    • 2. 模型构建部分
    • 3. 设置超参数
    • 4. 训练函数
    • 5. 测试函数
    • 6. 训练过程
    • 7. 模型的保存及调用模型进行预测

0. 总结

数据导入部分:本次数据导入没有使用torchvision自带的数据集,需要将原始数据进行处理包括数据导入,数据类型转换,划定训练集测试集后,再使用torch.utils.data中的DataLoader()加载数据

模型构建部分:有两个部分一个初始化部分(init())列出了网络结构的所有层,比如卷积层池化层等。第二个部分是前向传播部分,定义了数据在各层的处理过程。

设置超参数:在这之前需要定义损失函数,学习率,以及根据学习率定义优化器(例如SGD随机梯度下降),用来在训练中更新参数,最小化损失函数。

定义训练函数:函数的传入的参数有四个,分别是设置好的DataLoader(),定义好的模型,损失函数,优化器。函数内部初始化损失准确率为0,接着开始循环,使用DataLoader()获取一个批次的数据,对这个批次的数据带入模型得到预测值,然后使用损失函数计算得到损失值。接下来就是进行反向传播以及使用优化器优化参数,梯度清零放在反向传播之前或者是使用优化器优化之后都是可以的。将 optimizer.zero_grad() 放在了每个批次处理的开始,这是最标准和常见的做法。这样可以确保每次迭代处理一个新批次时,梯度是从零开始累加的。准确率是通过累计预测正确的数量得到的,处理每个批次的数据后都要不断累加正确的个数,最终的准确率是由预测正确的数量除以所有样本得数量得到的。损失值也是类似每次循环都累计损失值,最终的损失值是总的损失值除以训练批次得到的

定义测试函数:函数传入的参数相比训练函数少了优化器,只需传入设置好的DataLoader(),定义好的模型,损失函数。此外除了处理批次数据时无需再设置梯度清零、返向传播以及优化器优化参数,其余部分均和训练函数保持一致。

训练过程:定义训练次数,有几次就使用整个数据集进行几次训练,初始化四个空list分别存储每次训练及测试的准确率及损失。使用model.train()开启训练模式,调用训练函数得到准确率及损失。使用model.eval()将模型设置为评估模式,调用测试函数得到准确率及损失。接着就是将得到的训练及测试的准确率及损失存储到相应list中并合并打印出来,得到每一次整体训练后的准确率及损失。

模型的保存,调取及使用。在PyTorch中,通常使用 torch.save(model.state_dict(), ‘model.pth’) 保存模型的参数,使用 model.load_state_dict(torch.load(‘model.pth’)) 加载参数。

需要改进优化的地方:再保证整体流程没有问题的情况下,继续细化细节研究,比如一些函数的原理及作用,如何提升训练集准确率等问题。

1. 数据导入部分

import torch
import torch.nn as nn
import torchvision
from torchvision import transforms,datasetsimport os,PIL,pathlib,randomdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')
# 数据导入部分
data_dir = './data/weather_recognize/weather_photos/'
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*')) # 获取左右子文件名称
# classNames = [str(path).split("\\")[3] for path in data_paths] # ['cloudy', 'rain', 'shine', 'sunrise']
classNames = [path.parts[-1] for path in data_paths]
classNames
['cloudy', 'rain', 'shine', 'sunrise']
# 数据展示
import matplotlib.pyplot as plt
from PIL import Image # Pillow 是一个图像处理库,可以用来打开、操作和保存许多不同格式的图像文件。# 指定图像文件夹路径
image_folder = './data/weather_recognize/weather_photos/cloudy/'# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg",".png",".jpeg"))]# 创建Matplotlib图像fig,axes = plt.subplots(3,8,figsize=(16,6))# 使用列表推导式加载和显示图像
for ax,img_file in zip(axes.flat,image_files):img_path = os.path.join(image_folder,img_file)img = Image.open(img_path)ax.imshow(img)ax.axis('off')# 显示图像
plt.tight_layout()
plt.show()


在这里插入图片描述

# 数据格式转换
total_datadir = './data/weather_recognize/weather_photos/'# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = torchvision.transforms.Compose([transforms.Resize([224,224]), # 输入图片resize成统一尺寸transforms.ToTensor(),        # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(         # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。mean = [0.485,0.456,0.406],std = [0.229,0.224,0.225])
])total_data = torchvision.datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data
Dataset ImageFolderNumber of datapoints: 1125Root location: ./data/weather_recognize/weather_photos/StandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=warn)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
# 划分数据集
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset,test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset,test_dataset
(<torch.utils.data.dataset.Subset at 0x21120a68460>,<torch.utils.data.dataset.Subset at 0x2115a4ec7f0>)
# 使用dataloader加载数据,并设置好基本的batch_size
batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size = batch_size,shuffle = True,num_workers = 1 # 用于数据加载的子进程数量。通常,将其设置为大于 0 的值可以加快数据加载速度,特别是当数据集很大时。默认值为 0,表示在主进程中加载数据。 
)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size = batch_size,shuffle = True,num_workers = 1
)
# 查看数据
for X,y in test_dl:print("Shape of X[N,C,H,W]: ",X.shape)print("Shape of y: ",y.shape,y.dtype)break
Shape of X[N,C,H,W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

数据导入部分代码详解:

a. 数据读取部分

●第一步:使用pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。

●第二步:使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。

●第三步:

通过split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames中.

或直接使用pathlib的.parts方法

●第四步:打印classeNames列表,显示每个文件所属的类别名称。

a.1 提问:关于这段代码,我想知道为什么split函数中用以分割的是"\“符号而不是”/"

回答:
在这段代码中,split("\\")[3] 被用来从文件路径中提取特定的部分。这里使用反斜杠(\)而不是正斜杠(/)作为分隔符,可能是因为这段代码原本是为在 Windows 系统上运行而编写的。在 Windows 文件系统中,路径通常使用反斜杠 \ 作为分隔符。例如,一个典型的 Windows 文件路径可能看起来像这样:C:\Users\UserName\Documents\File.txt

但是,值得注意的是,Python 的 pathlib 库是跨平台的,并会自动处理不同操作系统中的路径分隔符差异。当使用 pathlib 处理文件路径时,通常不需要手动指定分隔符。事实上,使用 pathlib 的方法(如 .parts.name)通常更为安全和可靠,因为它们可以适应不同的操作系统。

例如,如果目的是获取路径中的某个特定部分(如这里的类名),可以使用 pathlib 提供的属性而不是手动分割字符串。如果 data_paths 中的路径是类似于 ./data/weather_recognize/weather_photos/ClassName/FileName.jpg 的格式,那么可以这样获取类名:

classNames = [path.parts[-2] for path in data_paths]

这样就无需关心是使用 \ 还是 / 作为分隔符,代码会更加健壮,适用于不同的操作系统。

a.2 提问2:可以为我介绍一下pathlib的.parts和.name方法吗

回答2:
当然可以。pathlib 是 Python 的一个标准库,用于面向对象地处理文件系统路径。它提供了多种方法来操作和提取路径信息,其中 .parts.name 是两个非常实用的属性。

.parts

  • .parts 返回一个表示路径各部分的元组。
  • 它将整个路径分解为其组成部分,每个部分由路径中的一个目录或文件名表示。
  • 在不同的操作系统中,路径的分隔符可能不同(例如,在 Windows 中是 \,在 Unix 和 macOS 中是 /),但 .parts 会自动处理这些差异。
  • 示例:
    • 假设有一个路径 Path("/usr/bin/python3").parts 将返回 ('/', 'usr', 'bin', 'python3')
    • 在 Windows 系统上,对于 Path("C:\\Users\\UserName\\Documents\\File.txt").parts 将返回 ('C:\\', 'Users', 'UserName', 'Documents', 'File.txt')

.name

  • .name 返回路径中最后一部分的名称。
  • 对于文件路径,它返回文件名;对于目录路径,它返回目录名。
  • 它不包括路径中的任何父目录部分。
  • 示例:
    • 对于路径 Path("/usr/bin/python3").name 将返回 python3
    • 对于路径 Path("C:\\Users\\UserName\\Documents\\File.txt").name 将返回 File.txt

使用 pathlib 的这些属性可以让路径处理更加直观和安全,尤其是在处理跨平台的路径问题时。

b. 用列表推导式加载和显示图像代码的逐行解释:
  1. for ax, img_file in zip(axes.flat, image_files):

    • 这是一个 for 循环,使用 zip 函数来同时遍历 axes.flat(所有子图对象的扁平化列表)和 image_files(图像文件名列表)。ax 是当前子图的引用,img_file 是当前要处理的图像文件名。
  2. img_path = os.path.join(image_folder, img_file)

    • 使用 os.path.join 构建完整的图像文件路径。这个函数能正确处理不同操作系统中的路径分隔符。
  3. img = Image.open(img_path)

    • 使用 Pillow 的 Image.open 方法打开图像文件。
  4. ax.imshow(img)

    • 在当前的子图(ax)上显示图像 img
  5. ax.axis('off')

    • 关闭当前子图的坐标轴,这样图像就不会显示任何坐标轴标签或刻度。
  6. plt.tight_layout()

    • 调整子图的布局,使得图像之间没有太大的间隙,并确保子图的标题和轴标签不会重叠。
  7. plt.show()

    • 显示最终的图像。这通常会弹出一个窗口显示所有的图像。

2. 模型构建部分

3, 224, 224(输入数据)

-> 12, 220, 220(经过卷积层1)

-> 12, 216, 216(经过卷积层2)-> 12, 108, 108(经过池化层1)

-> 24, 104, 104(经过卷积层3)

-> 24, 100, 100(经过卷积层4)-> 24, 50, 50(经过池化层2)

-> 60000 -> num_classes(4)

# 模型构建
import torch.nn.functional as Fclass Network_bn(nn.Module):def __init__(self):super(Network_bn,self).__init__()self.conv1 = nn.Conv2d(in_channels = 3,out_channels = 12,kernel_size = 5,stride = 1,padding = 0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels = 12,out_channels = 12,kernel_size = 5,stride = 1,padding = 0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2,2)self.conv3 = nn.Conv2d(in_channels = 12,out_channels = 24,kernel_size = 5,stride = 1,padding = 0)self.bn3 = nn.BatchNorm2d(24)self.conv4 = nn.Conv2d(in_channels = 24,out_channels = 24,kernel_size = 5,stride = 1,padding = 0)self.bn4 = nn.BatchNorm2d(24)self.dropout = nn.Dropout(p=0.5)     # 尝试在全连接层之前加入dropout,减少过拟合self.fc1 = nn.Linear(24*50*50,len(classNames)) # 尝试加入多个全连接层提升模型性能# self.fc2 = nn.Linear(30000,15000)             # 尝试加入多个全连接层提升模型性能# self.fc3 = nn.Linear(30000,len(classNames))   # 尝试加入多个全连接层提升模型性能def forward(self,x):x = F.relu(self.bn1(self.conv1(x)))x = F.relu(self.bn2(self.conv2(x)))x = self.pool(x)x = F.relu(self.bn3(self.conv3(x)))x = F.relu(self.bn4(self.conv4(x)))x = self.pool(x)x = x.view(-1,24*50*50)# x = self.dropout(x)    x = F.relu(self.fc1(x)) # 在全连接层之间添加激活函数# x = self.dropout(x)     # 尝试将dropout层放置在两个全连接层之间# x = F.relu(self.fc2(x)) # 在全连接层之间添加激活函数# x = F.relu(self.fc3(x)) # 在全连接层之间添加激活函数return xprint("Using {} device".format(device))model = Network_bn().to(device)
model
Using cuda deviceNetwork_bn((conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))(bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))(bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(conv3): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))(bn3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv4): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))(bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(dropout): Dropout(p=0.5, inplace=False)(fc1): Linear(in_features=60000, out_features=4, bias=True)
)

计算公式:

卷积维度计算公式:

  • 高度方向:$ H_{out} = \frac{\left(H_{in} - Kernel_size + 2\times padding\right)}{stride} + 1 $

  • 宽度方向:$ W_{out} = \frac{\left(W_{in} - Kernel_size + 2\times padding\right)}{stride} + 1 $

  • 卷积层通道数变化:数据通道数为卷积层该卷积层定义的输出通道数,例如:self.conv1 = nn.Conv2d(3,64,kernel_size = 3)。在这个例子中,输出的通道数为64,这意味着卷积层使用了64个不同的卷积核,每个核都在输入数据上独立进行卷积运算,产生一个新的通道。需要注意,卷积操作不是在单独的通道上进行的,而是跨所有输入通道(本例中为3个通道)进行的,每个卷积核提供一个新的输出通道。

池化层计算公式:

  • 高度方向: H o u t = ( H i n + 2 × p a d d i n g H − d i l a t i o n H × ( k e r n e l _ s i z e H − 1 ) − 1 s t r i d e H + 1 ) H_{out} = \left(\frac{H_{in} + 2 \times padding_H - dilation_H \times (kernel\_size_H - 1) - 1}{stride_H} + 1 \right) Hout=(strideHHin+2×paddingHdilationH×(kernel_sizeH1)1+1)

  • 宽度方向: W o u t = ( W i n + 2 × p a d d i n g W − d i l a t i o n W × ( k e r n e l _ s i z e W − 1 ) − 1 s t r i d e W + 1 ) W_{out} = \left( \frac{W_{in} + 2 \times padding_W - dilation_W \times (kernel\_size_W - 1) - 1}{stride_W} + 1 \right) Wout=(strideWWin+2×paddingWdilationW×(kernel_sizeW1)1+1)

其中:

  • H i n H_{in} Hin W i n W_{in} Win 是输入的高度和宽度。
  • p a d d i n g H padding_H paddingH p a d d i n g W padding_W paddingW 是在高度和宽度方向上的填充量。
  • k e r n e l _ s i z e H kernel\_size_H kernel_sizeH k e r n e l _ s i z e W kernel\_size_W kernel_sizeW 是卷积核或池化核在高度和宽度方向上的大小。
  • s t r i d e H stride_H strideH s t r i d e W stride_W strideW 是在高度和宽度方向上的步长。
  • d i l a t i o n H dilation_H dilationH d i l a t i o n W dilation_W dilationW 是在高度和宽度方向上的膨胀系数。

请注意,这里的膨胀系数 $dilation \times (kernel_size - 1) $实际上表示核在膨胀后覆盖的区域大小。例如,一个 $3 \times 3 $ 的核,如果膨胀系数为2,则实际上它覆盖的区域大小为$ 5 \times 5 $(原始核大小加上膨胀引入的间隔)。

计算流程:

输入数据:( 3 ∗ 224 ∗ 224 3*224*224 3224224)

conv1计算:卷积核数12,输出的通道也为12。-> ( 12 ∗ 220 ∗ 220 ) (12*220*220) (12220220)
输出维度 = ( 224 − 5 + 2 × 0 ) 1 + 1 = 220 \text{输出维度} = \frac{\left(224 - 5 + 2 \times 0\right)}{1} + 1 = 220 输出维度=1(2245+2×0)+1=220

conv2计算:-> ( 12 ∗ 216 ∗ 216 ) (12*216*216) (12216216)
输出维度 = ( 220 − 5 + 2 × 0 ) 1 + 1 = 216 \text{输出维度} = \frac{\left(220 - 5 + 2 \times 0\right)}{1} + 1 = 216 输出维度=1(2205+2×0)+1=216

pool1计算:通道数不变,步长为2-> ( 12 ∗ 108 ∗ 108 ) (12*108*108) (12108108)
输出维度 = ( 216 + 2 × 0 − 1 × ( 2 − 1 ) − 1 2 + 1 ) = 107 + 1 = 108 \text{输出维度} = \left(\frac{216 + 2 \times 0 - 1 \times \left(2 - 1\right) - 1}{2} + 1 \right) = 107 +1 = 108 输出维度=(2216+2×01×(21)1+1)=107+1=108

conv3计算:-> ( 24 ∗ 104 ∗ 104 ) (24*104*104) (24104104)
输出维度 = ( 108 − 5 + 2 × 0 ) 1 + 1 = 104 \text{输出维度} = \frac{\left(108 - 5 + 2 \times 0\right)}{1} + 1 = 104 输出维度=1(1085+2×0)+1=104

conv4计算:-> ( 24 ∗ 100 ∗ 100 ) (24*100*100) (24100100)
输出维度 = ( 104 − 5 + 2 × 0 ) 1 + 1 = 100 \text{输出维度} = \frac{\left(104 - 5 + 2 \times 0\right)}{1} + 1 = 100 输出维度=1(1045+2×0)+1=100

pool2计算:-> ( 24 ∗ 50 ∗ 50 ) (24*50*50) (245050)
输出维度 = ( 100 + 2 × 0 − 1 × ( 2 − 1 ) − 1 2 + 1 ) = 49 + 1 = 50 \text{输出维度} = \left(\frac{100 + 2 \times 0 - 1 \times \left(2 - 1\right) - 1}{2} + 1 \right) = 49 +1 = 50 输出维度=(2100+2×01×(21)1+1)=49+1=50

flatten层:-> 60000 60000 60000

n u m _ c l a s s e s ( 4 ) num\_classes(4) num_classes(4)

3. 设置超参数

loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
# opt = torch.optim.Adam(model.parameters(),lr=learn_rate)

4. 训练函数

# 训练循环
def train(dataloader,model,loss_fn,optimizer):size = len(dataloader.dataset)num_batches = len(dataloader)train_loss,train_acc = 0,0for X,y in dataloader:X,y = X.to(device),y.to(device)# 计算预测值pred = model(X)loss = loss_fn(pred,y)# 反向传播optimizer.zero_grad()loss.backward()optimizer.step()# 记录acc与losstrain_acc += (pred.argmax(1)==y).type(torch.float).sum().item()train_loss += loss.item()train_loss /= num_batchestrain_acc /= sizereturn train_acc,train_loss

5. 测试函数

# 测试函数
def test(dataloader,model,loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_acc,test_loss = 0,0# 当不进行梯度训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for X,y in dataloader:X,y = X.to(device),y.to(device)# 计算预测值pred = model(X)loss = loss_fn(pred,y)test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc,test_loss

6. 训练过程

epochs = 20train_loss = []
train_acc = []
test_loss = []
test_acc = []for epoch in range(epochs):model.train()epoch_train_acc,epoch_train_loss = train(train_dl,model,loss_fn,opt)model.eval()epoch_test_acc,epoch_test_loss = test(test_dl,model,loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d},Train_acc:{:.1f}%,Train_loss:{:.3f},Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1,epoch_train_acc*100,epoch_train_loss,epoch_test_acc*100,epoch_test_loss))print('Done!')
Epoch: 1,Train_acc:46.1%,Train_loss:1.207,Test_acc:46.2%,Test_loss:1.274
Epoch: 2,Train_acc:74.1%,Train_loss:0.822,Test_acc:72.9%,Test_loss:0.654
Epoch: 3,Train_acc:82.0%,Train_loss:0.614,Test_acc:80.9%,Test_loss:0.654
Epoch: 4,Train_acc:84.4%,Train_loss:0.507,Test_acc:78.2%,Test_loss:0.591
Epoch: 5,Train_acc:87.2%,Train_loss:0.465,Test_acc:79.6%,Test_loss:0.589
Epoch: 6,Train_acc:86.6%,Train_loss:0.408,Test_acc:84.0%,Test_loss:0.400
Epoch: 7,Train_acc:88.7%,Train_loss:0.375,Test_acc:83.1%,Test_loss:0.411
Epoch: 8,Train_acc:89.0%,Train_loss:0.341,Test_acc:84.9%,Test_loss:0.355
Epoch: 9,Train_acc:89.9%,Train_loss:0.319,Test_acc:85.3%,Test_loss:0.337
Epoch:10,Train_acc:90.9%,Train_loss:0.296,Test_acc:85.8%,Test_loss:0.353
Epoch:11,Train_acc:92.3%,Train_loss:0.268,Test_acc:85.8%,Test_loss:0.332
Epoch:12,Train_acc:91.2%,Train_loss:0.271,Test_acc:87.6%,Test_loss:0.309
Epoch:13,Train_acc:91.4%,Train_loss:0.273,Test_acc:86.7%,Test_loss:0.324
Epoch:14,Train_acc:92.2%,Train_loss:0.265,Test_acc:87.1%,Test_loss:0.344
Epoch:15,Train_acc:93.0%,Train_loss:0.229,Test_acc:89.3%,Test_loss:0.292
Epoch:16,Train_acc:93.7%,Train_loss:0.276,Test_acc:88.4%,Test_loss:0.424
Epoch:17,Train_acc:93.4%,Train_loss:0.230,Test_acc:89.8%,Test_loss:0.431
Epoch:18,Train_acc:94.2%,Train_loss:0.213,Test_acc:89.8%,Test_loss:0.382
Epoch:19,Train_acc:93.0%,Train_loss:0.231,Test_acc:88.4%,Test_loss:0.314
Epoch:20,Train_acc:93.7%,Train_loss:0.220,Test_acc:90.7%,Test_loss:0.303
Done!
# 结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

7. 模型的保存及调用模型进行预测

# 1.保存模型# torch.save(model, 'model.pth') # 保存整个模型
torch.save(model.state_dict(), 'model_state_dict.pth') # 仅保存状态字典# 2. 加载模型 or 新建模型加载状态字典# model2 = torch.load('model.pth') 
# model2 = model2.to(device) # 理论上在哪里保存模型,加载模型也会优先在哪里,但是指定一下确保不会出错model2 = Network_bn().to(device) # 重新定义模型
model2.load_state_dict(torch.load('model_state_dict.pth')) # 加载状态字典到模型# 3.图片预处理
from PIL import Image
import torchvision.transforms as transforms# 输入图片预处理
def preprocess_image(image_path):image = Image.open(image_path)transform = transforms.Compose([transforms.Resize((224, 224)),  # 假设使用的是224x224的输入transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])image = transform(image).unsqueeze(0)  # 增加一个批次维度return image# 4.预测函数(指定路径)
def predict(image_path, model):model.eval()  # 将模型设置为评估模式with torch.no_grad():  # 关闭梯度计算image = preprocess_image(image_path)image = image.to(device)  # 确保图片在正确的设备上outputs = model(image)_, predicted = torch.max(outputs, 1)  # 获取最可能的预测类别return predicted.item()# 5.预测并输出结果
image_path = "./data/weather_recognize/weather_photos/shine/shine22.jpg"  # 替换为你的图片路径
prediction = predict(image_path, model)
class_names = ["cloudy", "rain", "shine", "sunrise"]  # Replace with your class labels
predicted_label = class_names[prediction]
print("Predicted class:", predicted_label)
Predicted class: shine
# 选取dataloader中的一个图像进行判断
import numpy as np
# 选取图像
imgs,labels = next(iter(train_dl))
image,label = imgs[0],labels[0]# 选取指定图像并展示
# 调整维度为 [224, 224, 3]
image_to_show = image.numpy().transpose((1, 2, 0))# 归一化
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image_to_show = std * image_to_show + mean
image_to_show = np.clip(image_to_show, 0, 1)# 显示图像
plt.imshow(image_to_show)
plt.show()# 将图像转移到模型所在的设备上(如果使用GPU)
image = image.to(device)# 预测
with torch.no_grad():output = model(image.unsqueeze(0))  # 添加批次维度# 输出预测结果
_, predicted = torch.max(output, 1)
class_names = ["cloudy", "rain", "shine", "sunrise"]  # Replace with your class labels
predicted_label = class_names[predicted]
print(f"Predicted: {predicted.item()}, Actual: {label.item()}")

在这里插入图片描述

Predicted: 2, Actual: 2

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/576313.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【unity】如何汉化unity编译器

在【unity】如何汉化unity Hub这篇文章中&#xff0c;我们已经完成了unity Hub的汉化&#xff0c;现在让我们对unity Hub安装的编译器也进行下汉化处理。 第一步&#xff1a;在unity Hub软件左侧栏目中点击安装&#xff0c;选择需要汉化的编译器&#xff0c;再点击设置图片按钮…

猫咪冻干可以天天喂吗?推荐四大营养突出的宝藏主食冻干

近年来&#xff0c;冻干猫粮因其高品质而备受喜爱&#xff0c;吸引了无数猫主人的目光。像我这样的资深养猫人早已开始选择冻干喂养。但对于新手来说&#xff0c;他们可能会感到困惑&#xff1a;冻干到底是什么&#xff1f;猫咪冻干可以天天喂吗&#xff1f; 一、冻干到底是什么…

Unity | 射线检测及EventSystem总结

目录 一、知识概述 1.Input.mousePosition 2.Camera.ScreenToWorldPoint 3.Camera.ScreenPointToRay 4.Physics2D.Raycast 二、射线相关 1.3D&#xff08;包括UI&#xff09;、射线与ScreenPointToRay 2.3D&#xff08;包括UI&#xff09;、射线与ScreenToWorldPoint …

经纬恒润RTaW-Pegase:车载网络通信建模与时间特性分析工具

▎RTaW简介 RTaW-Pegase是由法国国家信息与自动化研究所&#xff08;INRIA&#xff09;旗下的RTaW公司开发的产品。它主要用于构建和优化汽车、航空航天以及工业领域的通信网络&#xff0c;包括时间敏感网络&#xff08;TSN&#xff09;、CAN&#xff08;FD&#xff0c;XL&…

Mac电脑怎么录屏?两大神器拯救你的录制需求

mac电脑作为苹果公司推出的一款备受欢迎的计算机设备&#xff0c;拥有出色的性能和简洁的设计。很多时候&#xff0c;我们需要在mac电脑上录制屏幕&#xff0c;以便制作教程、分享游戏过程或者保存重要信息。可是很多用户不知道mac电脑怎么录屏。本文将介绍两种在mac电脑上进行…

github拉取的项目添加至自己的仓库

想把GitHub的开源项目拉到本地进行二开&#xff0c;研究了一下上传到gitee的步骤&#xff1a; 步骤 gitee新建仓库&#xff0c;仓库名与本地文件夹的名称一致&#xff0c;建好后gitee的页面也会有显示git命令 打开项目目录&#xff0c;右键打开git bash&#xff08;或者在git…

Vue 03 组件通信

Vue学习 Vue 0301 浏览器本地存储localStorageSessionStorage案例 todolist的完善 02 组件自定义事件Custom Events基本使用解绑自定义事件注意事项①② 总结案例 todolist的完善 03 全局事件总线GlobalEventBus案例 todolist的完善 04 消息的订阅与发布案例 todolist的完善 05…

抽象类和接口以及Object类

抽象类 在面对对象的概念中&#xff0c;所有对象的创建都是通过类来创建的。但是并不是所有的类都会创建对应的对象。如果一个类中没有足够的数据创建一个对象&#xff0c;这样的类就是抽象类。 如同经常使用的Animal动物类&#xff0c;Dog类&#xff0c;Cat类&#xff0c;Do…

selenium实战之爬取虎牙直播列表页

文章目录 声明实现流程给你主播列表页面分析登录遮罩层处理解析直播列表的数据分页处理 完整的代码 声明 前面有了 selenium的基础&#xff0c;这里就拿虎牙直播页面来做一个实战测试&#xff0c;这是作为学习&#xff0c;测试使用&#xff0c;并不用作为商业用途&#xff0c;不…

实战 | 微调训练TrOCR识别弯曲文本

导 读 本文主要介绍如何通过微调训练TrOCR实现弯曲文本识别。 背景介绍 TrOCR&#xff08;基于 Transformer 的光学字符识别&#xff09;模型是性能最佳的 OCR 模型之一。在我们之前的文章中&#xff0c;我们分析了它们在单行打印和手写文本上的表现。 TrOCR—基于Transforme…

HarmonyOS 应用开发之Want的定义与用途

Want 是一种对象&#xff0c;用于在应用组件之间传递信息。 其中&#xff0c;一种常见的使用场景是作为 startAbility() 方法的参数。例如&#xff0c;当UIAbilityA需要启动UIAbilityB并向UIAbilityB传递一些数据时&#xff0c;可以使用Want作为一个载体&#xff0c;将数据传递…

C#实现身份证格式验证(自建异常实现提醒)

基本信息 中国居民身份证的格式包括18位数字&#xff0c;这些数字分别代表不同的信息&#xff1a; 第1、2位数字表示省份代码。 第3、4位数字表示城市代码。 第5、6位数字表示区县代码。 第7至14位数字表示出生年、月、日&#xff08;其中7、8、9、10位是年&#xff0c;11、12…