深度学习pytorch——卷积神经网络(持续更新)

计算机如何解析图片?

在计算机的眼中,一张灰度图片,就是许多个数字组成的二维矩阵,每个数字就是此点的像素值(图-1)。在存储时,像素值通常位于[0, 255]区间,在深度学习中,像素值通常位于[0, 1]区间。

图-1

一张彩色图片,是使用三张图片叠加而成,即RGB(red green blue)(图-2)。

图-2

什么是卷积?

标准的神经网络是全连接的方式,全连接会获取更多的信息,但同时也包含着巨大的算力需求。在以前,算力完全不足以支撑如此巨大的计算量,但是又要进行处理,因此当时的人们联想到了人类观察事物的过程,即结合人眼观察事物的角度——先观察吸引我们的点,忽略不吸引我们的点,这称为局部相关性(Receptive Field。应用到神经网络中,就出现了卷积的概念。

卷积操作就是先仅仅观察一部分,然后移动视野观察下一部分,这就称为卷积操作(图-3)。

图-3

表现在神经网络中就相当于只连接局部相关性的属性(假设红色的线都是相关的,其它的都断开,当然红色的线都是我自己瞎画的),如图-4所示:

图-4

 表现在实例上就是图-5的情况:

图-5

卷积的数学表示:设x(t)为输入的数据,h(t)为遍历使用的矩阵,y(t)为经过卷积计算得到的矩阵,将x(t)和h(t)进行点乘运算,将每次点成的结果进行累加得到y(t)对应元素的值(公式-1)。 

公式-1

 宏观效果(图-6):

图-6

实例

以不同的 h(t) 进行卷积操作,会获取到不同的特征:

锐化(图-7):

图-7

 模糊处理(图-8):

图-8

 边缘检测(图-9):

图-9

卷积神经网络

 图-3 是以1个Kernel_channel进行卷积运算。以多个Kernel_channels进行卷积运算(图-10):

图-10

假设原来的图像是一个28*28的灰度图像,即[1, 28, 28]。使用3*3的特征矩阵以7个角度来观察这副图像,最后得到的卷积层是[7, 26, 26]。

称呼声明:

Input_channels :输入的图像的通道,彩色图像就是3,灰度图像就是1

Kernel_channels: 以多少个视角来观察图像

Kernel_size : 特征矩阵的size

Stride: 每次向下/左移动的步长

Padding: 空白的数量,补0

实例(图-11),注意右下角的标注,每个圈中的值必须相等。将同一视角不同通道得出来的矩阵进行叠加,最后会得到一个高维的特性。卷积的过程叫做特征提取。 

图-11

输出图像的大小计算(公式-2):

公式-2

代码示例:

# 1、
x=torch.rand(1,1,28,28)  #[b,c,h,w]
layer=nn.Conv2d(1,3,kernel_size=3,stride=1,padding=0) # weight [3,1,3,3],不补零
out=layer.forward(x)
print(out.shape)
#torch.Size([1, 3, 26, 26])# 2、
layer=nn.Conv2d(1,3,kernel_size=3,stride=1,padding=1) # weight [3,1,3,3],补零
out=layer.forward(x)
print(out.shape)
#torch.Size([1, 3, 14, 14])# 3、
layer=nn.Conv2d(1,3,kernel_size=3,stride=2,padding=1) # weight [3,1,3,3],补零
out=layer.forward(x)
print(out.shape)
#torch.Size([1, 3, 14, 14])# 说明:
#现在基本不用layer.forward,而是用layer
out=layer(x) #推荐使用
print(out.shape)
#torch.Size([1, 3, 14, 14])###### inner weight $ bias #########
#直接调用
print(layer.weight)
# Parameter containing:
# tensor([[[[-0.1249, -0.3302, -0.1774],
#           [-0.1542,  0.0873,  0.0282],
#           [-0.0006, -0.1798, -0.1030]]],
#
#
#         [[[ 0.1932,  0.3240,  0.1747],
#           [-0.2188, -0.1775, -0.0652],
#           [-0.1455, -0.1220,  0.0629]]],
#
#
#         [[[ 0.2596,  0.3017,  0.2028],
#           [-0.2629, -0.0715,  0.3267],
#           [ 0.3174, -0.1441, -0.1714]]]], requires_grad=True)print(layer.weight.shape)
# torch.Size([3, 1, 3, 3])print(layer.bias.shape)
# torch.Size([3])

向上/向下采样

最大采样,选取最大的(图-12):

图-12

 代码演示:

x=out
print(x.shape)
#torch.Size([1, 3, 14, 14])layer=nn.MaxPool2d(2,stride=2) #最大池化,2*2的滑动窗口,步长为2
out=layer(x) #推荐使用
print(out.shape)
#torch.Size([1, 3, 7, 7])

平均采样,选择平均值(图-13):

图-13

 代码演示:

x=out
print(x.shape)
#torch.Size([1, 3, 14, 14])out=F.avg_pool2d(x,2,stride=2) #平均池化,2*2的滑动窗口,步长为2
print(out.shape)
#torch.Size([1, 3, 7, 7])

上采样,选取最邻近的(图-14):

扩展到卷积层呢?以一个5层的卷积层为例,进行分析:

 代码演示:

x=out
print(out.shape)
# torch.Size([1, 3, 7, 7])
out=F.interpolate(x,scale_factor=2,mode='nearest')# 为放大倍数
print(out.shape) 
# torch.Size([1, 3, 14, 14])
out=F.interpolate(x,scale_factor=3,mode='nearest')
print(out.shape)
# torch.Size([1, 3, 21, 21])

 扩展到卷积层

图-16

1、输入是一个32*32的灰度图像[1, 32, 32],使用一个3*3的特征矩阵进行卷积,分别从6个角度进行卷积,步长为1,会得到一个[6,1,28,28]的图像
2、上采样-》[6,1,14,14]
3、卷积-》[16,1,10,10]
4、上采样-》[16,1,5,5]
5、全连接
6、全连接
7、高斯分布

ReLU

图-17

 代码演示:

#两种方式,一种是nn.ReLU,另一种是F.relu
x=out
print(x.shape)
#torch.Size([1, 3, 7, 7])layer=nn.ReLU(inplace=True)
out=layer(x)
print(out.shape)
#torch.Size([1, 3, 7, 7])#与上面三行等价
out=F.relu(x)
print(out.shape)
#torch.Size([1, 3, 7, 7])#relu激活函数并不改变size大小

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/578748.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

07-工作流设计:如何设计合理的多人开发模式?

一个企业级项目是由多人合作完成的,不同开发者在本地开发完代码之后,可能提交到同一个代码仓库,同一个开发者也可能同时开发几个功能特性。这种多人合作开发、多功能并行开发的特性如果处理不好,就会带来诸如丢失代码、合错代码、…

Docker镜像逆向生成Dockerfile

你是否曾经遇到过一个想要使用的 Docker 镜像,但却无法修改以适应你的特定需求?或者你可能发现了一个喜欢的 Docker 镜像,但想要了解它是如何构建的?在这两种情况下,将 Docker 镜像逆向生成一个 Dockerfile 可以使用一…

fzf 命令行工具 - 终端模糊搜索

1. 介绍 fzf 命令行工具 Github 仓库:GitHub - junegunn/fzf: :cherry_blossom: A command-line fuzzy finder fzf 是一款使用 go 语言编写的交互式命令行工具,有着 “命令行模糊搜索神器” 的美称 可以用于文件列表、历史命令、命令输出结果等模糊搜索…

5-规范设计(下):commit信息风格迥异、难以阅读,如何规范?

我们在做代码开发时,经常需要提交代码,提交代码时需要填写 Commit Message(提交说明),否则就不允许提交。 所以在 Go 项目开发时,一个好的 Commit Message 至关重要: 可以使自己或者其他开发人…

不用手机号注册海外邮箱

文章目录 1.打开**[proton官网](https://proton.me)**2.选择免费套餐3.选择邮箱后缀,设置用户名和密码4. 通过真人验证,跳过手机验证5.进入邮箱 最近需要注册ChatGPT账号,但是像outlook,hotmail的邮箱基本都会被封,我又…

.NET CORE 分布式事务(三) DTM实现Saga及高并发下的解决方案

目录(结尾附加项目代码资源地址) 引言: 1. SAGA事务模式 2. 拆分为子事务 3. 失败回滚 4. 如何做补偿 4.1 失败的分支是否需要补偿 5. 异常 6. 异常与子事务屏障 6.1 NPC的挑战 6.2 现有方案的问题 6.3 子事务屏障 6.4 原理 7. 更多高级场景 7.1 部分…

【AI绘画/作图】风景背景类关键词模板参考

因为ds官网被墙,所以翻了IDE的源码整理了下stablestudio里的官方模板,顺便每个模板生成了一份…不知道怎么写关键词的可以参考 Stunning sunset over a futuristic city, with towering skyscrapers and flying vehicles, golden hour lighting and dramatic cloud…

brew install 命令详解

1. 前言 Homebrew 是一款 Mac OS 平台非常流行的软件包管理工具 通过一条简单的指令&#xff0c;就可以软件包管理&#xff0c;比如&#xff1a;安装、升级、更新等操作&#xff0c;这也是它这么流行的主要原因 2. 安装 安装软件命令格式 # 安装软件brew install <package…

vs右键在浏览器中查看报错

vs右键在浏览器中查看报错Visual studio 右键在浏览器中查看报错HTTP错误500.30——ANCM进程内启动失败——.NET Core HTTP Error 500.30 - ANCM In-Process Start Failure - .NET Core HTTP Error 500.30 - ANCM In-Process Start Failure Common solutions to this issue: …

8.6 循环神经网络的简洁实现

每个步长共用参数 加载数据 虽然 8.5节 对了解循环神经网络的实现方式具有指导意义&#xff0c;但并不方便。 本节将展示如何使用深度学习框架的高级API提供的函数更有效地实现相同的语言模型。 我们仍然从读取时光机器数据集开始。 import torch from torch import nn from…

若依菜单名称过长显示不全怎么办?

菜单名称太长的话超出宽度部分会显示...,我们可以自己调整一下菜单的宽度或者设置一个title,这样鼠标移动上去显示完整的菜单名称。 目录 1、在layout\components\Sidebar\SidebarItem.vue文件设置:title 2、在layout\components\Sidebar\Item.

XUbuntu22.04之Typora快捷键Ctrl+5不生效问题(二百二十六)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…