stl_list类(使用+实现)(C++)

list

  • 一、list-简单介绍
  • 二、list的常用接口
    • 1.常见构造
    • 2.iterator的使用
    • 3.Capacity和Element access
    • 4.Modifiers
    • 5.list的迭代器失效
  • 三、list实现
  • 四、vector 和 list 对比
  • 五、迭代器
    • 1.迭代器的实现
    • 2.迭代器的分类(按照功能分类)
    • 3.反向迭代器
      • (1)、包装逻辑
      • (2)、代码
    • 注意

一、list-简单介绍

list是一个可以在常熟范围内任意位置进行插入和删除的序列式容器。底层是带头双向循环链表(链接中有对带头双向循环链表的逻辑分析)。

二、list的常用接口

1.常见构造

(constructor)构造函数声明接口说明
list()无参构造
list(size_type n, const T& val = T()构造并初始化n个val
list(const list& x)拷贝构造
list(InputIterator first, InputIterator last)使用迭代器[first, last)区间中的元素初始化构造list

test:

void test_constructor()
{list<int> lt1;                       //无参构造list<int> lt2(4, 25);                //构造并初始化n个vallist<int> lt3(l2.begin(), l2.end()); //用lt2的[first, last)区间构造list<int> lt4(l3);                   //拷贝构造
}

2.iterator的使用

注意:list的迭代器和vector string不同。vector和string的迭代器都是原生指针,而list的迭代器是一个封装起来的指针。

iterator的使用接口说明
begin + end返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器
rbegin + rend返回第一个元素的reverse_iterator(即end()位置),返回最后一个元素下一个位置的reverse_iterator(即begin()位置)

一个正向迭代器一个反向迭代器,注意使用规则,前者++迭代器向后移动,后者++迭代器向前移动。

test:

void test_iterator()
{int arr[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };size_t sz = sizeof(arr) / sizeof(arr[0]);list<int> lt(arr, arr + sz);list<int>::iterator it = lt.begin();while (it != lt.end()){cout << *it << " ";++it;}cout << endl;//反向迭代器list<int>::reverse_iterator rit = lt.rbegin();while (rit != lt.rend()){cout << *rit << " ";++rit;}cout << endl;
}

iterator示意图

3.Capacity和Element access

函数名称接口说明
size返回list中的有效节点个数
empty判断是否为空
函数名称接口说明
front返回list的第一个节点中,值的引用
back返回list的最后一个节点中,值的引用

test:

void test_capacity_elementAccsee()
{list<int> lt;lt.push_back(77);lt.push_back(22);//头节点的值-尾节点的值lt.front() -= lt.back();cout << lt.front() << endl;cout << "size:" << lt.size() << endl;cout << "empty:" << lt.empty() << endl;
}

4.Modifiers

函数名称接口说明
push_front头插
pop_front头删
push_back尾插
pop_back尾删
erase删除pos位置的数据
insert在pos之前插入val
swap交换两个list的元素
clear情况list的有效元素

test: 头插 头删 尾插 尾删

void test_Modifiers1()
{list<int> lt;//头插lt.push_front(1);lt.push_front(2);//尾插lt.push_back(10);lt.push_back(20);//范围forfor (auto e : lt){cout << e << " ";}cout << endl;//头删lt.pop_front();//尾删lt.pop_back();for (auto e : lt){cout << e << " ";}cout << endl;
}

test: 插入 删除 交换 清理

void test_Modifiers2()
{list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);    Print(lt);//获取链表第二个节点list<int>::iterator pos = lt.begin();cout << *(++pos) << endl;//在pos前插入值为100的元素lt.insert(pos, 100);Print(lt);//在pos前插入值5个5lt.insert(pos, 5, 5);Print(lt);//在pos前插入[v.begin(), v.end())区间的元素vector<int> v{ 6, 6, 6 ,6 };lt.insert(pos, v.begin(), v.end());Print(lt);//删除操作//删除pos位置上的元素     --   特别注意一下迭代器失效问题(下个知识点介绍)lt.erase(pos);Print(lt);// 删除list中[begin, end)区间中的元素,即删除list中的所有元素lt.erase(lt.begin(), lt.end());Print(lt);list<int> lt1{ 6, 6, 6 ,6 };lt1.swap(lt);cout << "lt::empty:" << lt.empty() << endl;cout << "lt1::empty:" << lt1.empty() << endl;lt.clear();cout << "new_lt::empty:" << lt.empty() << endl;
}

5.list的迭代器失效

在list中迭代器失效即迭代器指向的节点是无效的,即该节点被删除了。因为list的底层是带头双向循环列表,所以在插入元素时,不会导致liet迭代器失效,只有删除时指向删除节点的那个迭代器失效,其他的迭代器不受影响。

错误代码:

void test_iterator_invalid()
{int arr[] = { 1,2,3,4,5,6,7,8,9,0 };size_t sz = sizeof(arr) / sizeof(arr[0]);list<int> lt(arr, arr + sz);list<int>::iterator it = lt.begin();while (it != lt.end()){//erase()执行完之后,it所指向的节点已经被删除,因此it无效,下次使用必须重新赋值lt.erase(it);++it;   //err   迭代器失效}
}

改正:

void test_iterator_invalid()
{int arr[] = { 1,2,3,4,5,6,7,8,9,0 };size_t sz = sizeof(arr) / sizeof(arr[0]);list<int> lt(arr, arr + sz);list<int>::iterator it = lt.begin();while (it != lt.end()){lt.erase(it++);  //it = lt.erase(it);}
}

三、list实现

list类整体实现代码
注意:这里就不单列出来一部分成员函数进行介绍了,因为重要的在string类和vector类都进行了重点讲解。

反向迭代器在list类实现中不进行介绍,在最后单列一个知识点讲解

#include <assert.h>namespace kpl
{// List的节点类template<class T>struct ListNode{ListNode<T>* _prev;ListNode<T>* _next;T _val;//初始化ListNode(const T& val = T()): _prev(nullptr), _next(nullptr), _val(val){}};//List 的迭代器:将原生态指针进行封装template<class T, class Ref, class Ptr>class ListIterator{typedef ListNode<T> Node;typedef ListIterator<T, Ref, Ptr> Self;public:// Ref 和 Ptr 类型重定义,在实现反向迭代器时便于使用。就不需要再模板传参时传Ref和Ptrtypedef Ref Ref;typedef Ptr Ptr;// 构造ListIterator(Node* node = nullptr): _node(node){}// 在模板中多加一个参数Ref的原因是:区分const返回Ref operator*() { return _node->_val;}//Ptr:区分const返回Ptr operator->() { return &(operator*()); }Self& operator++(){_node = _node->_next;return *this;}Self operator++(int){Self temp(*this);_node = _node->_next;return temp;}Self& operator--(){_node = _node->_prev;return *this;}Self operator--(int){Self temp(*this);_node = _node->_prev;return temp;}// 比较bool operator!=(const Self& l)const{ return _node != l._node;}bool operator==(const Self& l)const{ return _node != l._node;}Node* _node;};//反向迭代器借用正向迭代器实现template<class Iterator>class ReverseListIterator{public:typedef typename Iterator::Ref Ref;typedef typename Iterator::Ptr Ptr;typedef ReverseListIterator<Iterator> Self;// 构造ReverseListIterator(Iterator it): _it(it){}Ref operator*(){Iterator temp(_it);--temp;return *temp;}Ptr operator->(){return &(operator*());}Self& operator++(){--_it;return *this;}Self operator++(int){Self temp(*this);--_it;return temp;}Self& operator--(){++_it;return *this;}Self operator--(int){Self temp(*this);++_it;return temp;}// 比较bool operator!=(const Self& l)const{return _it != l._it;}bool operator==(const Self& l)const{return _it != l._it;}Iterator _it;};//list类模板的实现template<class T>class list{typedef ListNode<T> Node;public:// 正向迭代器// 这里就也可以看出传三个模板参数的原因。不值得再去写一个const修饰的模板,普通的迭代器和const修饰的迭代器区别就在于部分成员函数的返回值,所以多传递两个参数即可typedef ListIterator<T, T&, T*> iterator;typedef ListIterator<T, const T&, const T&> const_iterator;// 反向迭代器typedef ReverseListIterator<iterator> reverse_iterator;typedef ReverseListIterator<const_iterator> const_reverse_iterator;public:// List的构造list(){CreateHead();  //因为很多地方都会使用这部分代码,所以进行封装,方便调用}list(int n, const T& value = T()){CreateHead();for (int i = 0; i < n; ++i)push_back(value);}template <class Iterator>list(Iterator first, Iterator last){CreateHead();while (first != last){push_back(*first);++first;}}//拷贝构造list(const list<T>& l){CreateHead();// 用l中的元素构造临时的temp,然后与当前对象交换。也可以一次赋值list<T> temp(l.begin(), l.end());swap(temp);}list<T>& operator=(list<T> l){swap(l);return *this;}~list(){clear();delete _head;_head = nullptr;}// List的迭代器iterator begin() { //or return _head->_next;return iterator(_head->_next); }iterator end() { //or return _head;return iterator(_head); }const_iterator begin()const { //or return _head->_next;return const_iterator(_head->_next); }const_iterator end()const{ //or return _head;return const_iterator(_head); }//反向迭代器reverse_iterator rbegin(){return reverse_iterator(end());}reverse_iterator rend(){return reverse_iterator(begin());}const_reverse_iterator rbegin()const{return const_reverse_iterator(end());}const_reverse_iterator rend()const{return const_reverse_iterator(begin());}// capacity相关size_t size()const{//在实现size时,也可以通过给list类增减一个size_t类型的成员变量,然后返回Node* cur = _head->_next;size_t count = 0;while (cur != _head){count++;cur = cur->_next;}return count;}bool empty()const{return _head->_next == _head;}void resize(size_t newsize, const T& data = T()){size_t oldsize = size();if (newsize <= oldsize){// 有效元素个数减少到newsizewhile (newsize < oldsize){pop_back();oldsize--;}}else{while (oldsize < newsize){push_back(data);oldsize++;}}}// List的元素访问操作// 注意:List不支持operator[]T& front(){return _head->_next->_val;}const T& front()const{return _head->_next->_val;}T& back(){return _head->_prev->_val;}const T& back()const{return _head->_prev->_val;}// List的插入和删除void push_back(const T& val) { insert(end(), val); }void pop_back() { erase(--end()); }void push_front(const T& val) { insert(begin(), val); }void pop_front() { erase(begin()); }// 在pos位置前插入值为val的节点iterator insert(iterator pos, const T& val){Node* pNewNode = new Node(val);Node* cur = pos._node;// 先将新节点插入pNewNode->_prev = cur->_prev;pNewNode->_next = cur;pNewNode->_prev->_next = pNewNode;cur->_prev = pNewNode;return iterator(pNewNode);}// 删除pos位置的节点,返回该节点的下一个位置iterator erase(iterator pos){assert(pos != end());Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;prev->_next = next;next->_prev = prev;delete cur;return next;}void clear(){iterator it = begin();while (it != end()){it = erase(it);}_head->_next = _head->_prev = _head;}void swap(list<T>& l){std::swap(_head, l._head);}private:void CreateHead(){_head = new Node;_head->_prev = _head;_head->_next = _head;}private:Node* _head;};
}

四、vector 和 list 对比

vectorlist
底 层 结 构动态顺序表,一段连续空间带头结点的双向循环链表
访 问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素效率O(N)
插 入 和 删 除任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低任意位置插入和删除效率高,不需要搬移元素,时间复杂度为O(1)
空 间 利 用 率底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低
迭 代 器原生态指针对原生态指针(节点指针)进行封装
代 器 失 效在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效插入元素不会导致迭代器失效,删除元素时,只会导致当前迭代器失效,其他迭代器不受影响
使 用 场 景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随机访问

五、迭代器

1.迭代器的实现

迭代器有两种实现方式,具体应根据容器底层数据结构实现:

  1. 原生态指针,比如:vector
  2. 将原生态指针进行封装,因迭代器使用形式与指针完全相同,因此在自定义的类中必须实现以下方法:
    • 指针可以解引用,迭代器的类中必须重载operator*()
    • 指针可以通过->访问其所指空间成员,迭代器类中必须重载oprator->()
    • 指针可以++向后移动,迭代器类中必须重载operator++()与operator++(int)
    • 指针可以通过->访问其所指空间成员,迭代器类中必须重载oprator->()。至于operator–()/operator–(int)释放需要重载,根据具体的结构来抉择,双向链表可以向前移动,所以需要重载,如果是forward_list(单链表)就不需要重载–。
    • 迭代器需要进行是否相等的比较,因此还需要重载operator==()与operator!=()

2.迭代器的分类(按照功能分类)

迭代器的分类

  1. 单向迭代器的功能相对较少,只能进行逐个元素的遍历和访问操作。它只支持t运算符来移动到下一个元素,不支持–运算符来回退到前一个元素。因此,单向迭代器无法进行逆向遍历和随机访问元素的操作。
  2. 双向迭代器相比于单向迭代器功能更加强大,它支持双向即可以使用++运算符向前移动到下一个元素,也可以使用–运算符向后移动到前一个元素。因此,双向迭代器可以进行逆向遍历和前向遍历操作。
  3. 随机迭代器是迭代器的最高级别,功能最丰富。它除了支持双向迭代器的所有操作外,还可以进行随机访问,即可以使用]运算符来访问任意位置的元素。此外,随机迭代器还可以进行迭代器之间的算术运算,比如可以使用+、-运算符来计算迭代器之间的距离。

所以,单向迭代器功能最少,只能逐个访问元素;双向迭代器比单向迭代器功能更强大,可以双向移动;随机迭代器是最高级别的迭代器,功能最丰富,除了双向移动外还能进行随机访问和算术运算操作。

3.反向迭代器

(1)、包装逻辑

在这里插入图片描述

(2)、代码

template<class Iterator>class ReverseListIterator{// 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的一个类型,而不是静态成员变量// 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量// 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的//typename和class的区别会在模板的博客中进行介绍public:typedef typename Iterator::Ref Ref;typedef typename Iterator::Ptr Ptr;typedef ReverseListIterator<Iterator> Self;public:// 构造ReverseListIterator(Iterator it): _it(it){}Ref operator*(){Iterator temp(_it);--temp;return *temp;}Ptr operator->(){return &(operator*());}Self& operator++(){--_it;return *this;}Self operator++(int){Self temp(*this);--_it;return temp;}Self& operator--(){++_it;return *this;}Self operator--(int){Self temp(*this);++_it;return temp;}bool operator!=(const Self& l)const{return _it != l._it;}bool operator==(const Self& l)const{return _it != l._it;}Iterator _it;};

注意

	//迭代器对箭头进行了重载,返回的是一个指针Ptr operator->(){return &(operator*());}

虽然重载了->但是在使用的时候,会发现一个问题。
eg:

struct A
{A(int a1 = 0, int a2 = 0):_a1(a1), _a2(a2){}int _a1;int _a2;
};void test_iterator()
{list<A> lt;lt.push_back(A(1, 1));lt.push_back(A(2, 2));lt.push_back(A(3, 3));list<A>::iterator it = lt.begin();while (it != lt.end()){cout << (*it)._a1 << " " << (*it)._a2 << endl;cout << it->_a1 << " " << it->_a2 << endl;++it;}cout << endl;
}

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/58393.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux学习-1

Linux学习-1 1.文件系统的常识 本文主要引用鸟哥的Linux私房菜 1.1 常见的标识介绍 > [-][rwx][r-x][r--] > 1 234 567 890 1 为&#xff1a;代表这个文件名为目录或文件&#xff0c;本例中为文件&#xff08;-&#xff09;&#xff1b; 234为&#xff1a;拥有者的权限…

HTML5基础

1、HTML5概述 2014年10月28日&#xff0c;W3C&#xff08;world wide web consortium&#xff0c;万维网联盟&#xff09;的HTML工作组发布了HTML5的正式推荐标准。HTML5作为构建开放Web平台的核心&#xff0c;增加了支持Web应用的许多新特性&#xff0c;以及更符合开发者使用…

了解HTTP代理日志:解读请求流量和响应信息

嗨&#xff0c;爬虫程序员们&#xff01;你们是否在了解爬虫发送的请求流量和接收的响应信息上有过困扰&#xff1f;今天&#xff0c;我们一起来了解一下。 首先&#xff0c;我们需要理解HTTP代理日志的基本结构和内容。HTTP代理日志是对爬虫发送的请求和接收的响应进行记录的文…

【ARM64 常见汇编指令学习 15 -- ARM 标志位的学习】

文章目录 ARM 标志位介绍Zero Condition flag(零标志位)零标志位判断实例 上篇文章&#xff1a;ARM64 常见汇编指令学习 14 – ARM 汇编 .balign,.balignw,.balign 伪指令学习 下篇文章&#xff1a;ARM64 常见汇编指令学习 16 – ARM64 SMC 指令 ARM 标志位介绍 在ARM架构中&am…

提升Element UI分页查询用户体验与交互:实现修改未保存提示

我实现的功能是在 element ui 的分页组件中进行分页查询时&#xff0c;如果当前有未保存的修改数据就提示用户&#xff0c;用户可以选择是否放弃未保存的数据。确认放弃就重新查询数据&#xff1b;选择不放弃&#xff0c;不重新查询&#xff0c;并且显示条数选择框保持原样&…

爬虫009_字符串高级_替换_去空格_分割_取长度_统计字符_间隔插入---python工作笔记028

然后再来看字符串的高级操作 取长度 查找字符串下标位置 判断是否以某个字符,开头结尾 计算字符出现次数 替换

CAPL - XML和TestModule结合实现测试项可选

目录 目的:是否想实现如下面的功能呢? 一、.can和.cin文件中函数开发

AI Chat 设计模式:12. 享元模式

本文是该系列的第十二篇&#xff0c;采用问答式的方式展开&#xff0c;问题由我提出&#xff0c;答案由 Chat AI 作出&#xff0c;灰色背景的文字则主要是我的一些思考和补充。 问题列表 Q.1 给我介绍一下享元模式A.1Q.2 也就是说&#xff0c;其实共享的是对象的内部状态&…

pycharm的Terminal中如何设置打开anaconda3的虚拟环境

在pycharm的File -> Settings -> Tools -> Terminal下面&#xff0c;如下图所示 修改为红框中内容&#xff0c;然后关闭终端在重新打开终端&#xff0c;即可看到anaconda3的虚拟环境就已经会被更新

谈谈对Spring MVC的理解

问题分析&#xff1a; SpringMVC 是一种基于 Java 语言开发&#xff0c;实现了 Web MVC 设计模式&#xff0c;请求驱动类型 的轻量级 Web 框架。 SpringMVC采用了 MVC 架构模式的思想&#xff0c;通过把 Model&#xff0c;View&#xff0c;Controller 分离&#xff0c;将 Web 层…

【果树农药喷洒机器人】Part1:研究现状分析以及技术路线介绍

本专栏介绍&#xff1a;付费专栏&#xff0c;持续更新机器人实战项目&#xff0c;欢迎各位订阅关注。 关注我&#xff0c;带你了解更多关于机器人、嵌入式、人工智能等方面的优质文章&#xff01; 文章目录 一、项目背景二、国内外研究现状2.1 国内研究现状2.2 国外研究现状 三…

时序预测 | MATLAB实现BO-GRU贝叶斯优化门控循环单元时间序列预测

时序预测 | MATLAB实现BO-GRU贝叶斯优化门控循环单元时间序列预测 目录 时序预测 | MATLAB实现BO-GRU贝叶斯优化门控循环单元时间序列预测效果一览基本介绍模型搭建程序设计参考资料 效果一览 基本介绍 MATLAB实现BO-GRU贝叶斯优化门控循环单元时间序列预测。基于贝叶斯(bayes)…