算法的时间复杂度和空间复杂度

目录

前言:

        ✨什么是数据结构?

       ✨ 什么是算法?

        ✨数据结构和算法的重要性

🍑算法的时间复杂度和空间复杂度  

算法效率

🎉时间复杂度

2.1 时间复杂度的概念

2.2 大O的渐进表示法

🎉空间复杂度


前言:

什么是数据结构?

数据结构是计算机科学中研究数据组织方式的一门学科。它主要研究如何将数据以某种逻辑方式组织和存储,以便更有效地访问和修改。一些常见的数据结构包括数组、链表、栈、队列、树和图等。了解数据结构可以帮助我们更好地设计和实现算法,以及优化程序的效率。

什么是算法?

算法就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来输入数据转化成输出结果。

 数据结构和算法的重要性

  • 提供高效的解决方案

算法和数据结构是为了提供高效的解决方案而设计的。它们提供了各种数据结构和算法,可以在特定的时间复杂度内完成任务。高效的算法和数据结构可以节省计算机资源,提高程序的性能。

  • 提高编程技能

数据结构和算法是编程的核心概念。掌握这些概念可以提高编程技能和编程能力。它们可以帮助程序员设计更好的程序结构,熟悉常见编程问题的解决方案,以及在编写代码时注意效率。

  • 推动新技术的发展

许多新技术都基于数据结构和算法的概念。例如,人工智能和机器学习技术需要强大的算法和高效的数据结构来处理和分析大量数据。掌握数据结构和算法可以帮助人们更好地理解新技术,从而推动新技术的发展和应用。

  • 提高代码可读性和可维护性

数据结构和算法不仅可以提高程序的性能,还可以提高程序的可读性和可维护性。良好的程序结构和算法可以使代码更易于阅读和修改,同时也可以增强代码的可维护性。


算法的时间复杂度空间复杂度  

算法效率

算法的复杂度:

算法在编写成可执行程序后,运行时需要耗费时间资源和空间 ( 内存 ) 资源 。因此 衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的 ,即时间复杂度和空间复杂度。
时间复杂度 主要衡量一个算法的运行快慢,而 空间复杂度 主要衡量一个算法运行所需要的额外空间 。在计算 机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计 算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中, 算法的时间复杂度是一个函数 ,它定量描述了该算法的运行时间。一 个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知 道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个
分析方式。一个算法所花费的时间与其中语句的执行次数成正比例, 算法中的基本操作的执行次数,为算法 的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{for (int j = 0; j < N ; ++ j){++count;}
}for (int k = 0; k < 2 * N ; ++ k)
{++count;
}
int M = 10;
while (M--)
{++count;
}
printf("%d\n", count);
}

可以准确算出来嘛?

哈哈哈哈哈为了解决这个问题,我们的前辈想到了一个办法,就是计算算法的大概执行次数。

Func1 执行的基本操作次数 :
N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要 大概执行次数,那么这 里我们使用大 O 的渐进表示法。

2.2 O的渐进表示法

实际中,我们计算时间复杂度时,我们其实不一定要计算精确的执行次数,而只需要大概执行次数那么这里我们使用大O的渐进表示法

推导大 O 阶方法:
1 、用常数 1 取代运行时间中的所有加法常数。
2 、在修改后的运行次数函数中,只保留最高阶项。
3 、如果最高阶项存在且不是 1 ,则去除与这个项目相乘的常数。得到的结果就是大 O 阶。
使用大 O 的渐进表示法以后, Func1 的时间复杂度为O(N^)
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大 O 的渐进表示法 去掉了那些对结果影响不大的项 ,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数 ( 上界 )
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数 ( 下界 )
例如:在一个长度为 N 数组中搜索一个数据 x
最好情况: 1 次找到
最坏情况: N 次找到
平均情况: N/2 次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为 O(N)
即:抓大头,取决定性结果那一项。
 
2.3常见时间复杂度计算举例

实例1: 

// 计算Func2的时间复杂度?
void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}

 O(n)

实例2

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k){++count;}for (int k = 0; k < N ; ++ k){++count;}printf("%d\n", count);
}

 O(M+N)

特殊情况:

实例3:

// 计算Func4的时间复杂度?
void Func4(int N)
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}

O(1)

实例4:

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );

O(N)

在实际中,一般情况关注的是算法的最坏运行情况,所以数组中搜索数据的时间复杂度为O(N)

时间复杂度计算时,是一个稳健保守预期

实例5:

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

 O(N^2)

实例6:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n-1;// [begin, end]:begin和end是左闭右闭区间,因此有=号while (begin <= end){int mid = begin + ((end-begin)>>1);if (a[mid] < x)begin = mid+1;else if (a[mid] > x)end = mid-1;elsereturn mid;}return -1;
}

O(logN)

最坏情况,查找区间缩放只剩一个值时,就是最坏

最坏情况下查找多少次?除了多少次2,就查找了多少次

假设查找x次,2^x=N, x=logN

实例7:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N;
}

 O(N)

总结:递归算法时间复杂度是多次调用的次数累加

实例8:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{if(N < 3)return 1;return Fib(N-1) + Fib(N-2);
}

O(2^N)

思路:

1.实例 1 基本操作执行了 2N+10 次,通过推导大 O 阶方法知道,时间复杂度为 O(N)
2. 实例 2 基本操作执行了 M+N 次,有两个未知数 M N ,时间复杂度为 O(N+M)
3. 实例 3 基本操作执行了 10 次,通过推导大 O 阶方法,时间复杂度为 O(1)
4. 实例 4 基本操作执行最好 1 次,最坏 N 次,时间复杂度一般看最坏,时间复杂度为 O(N)
5. 实例 5 基本操作执行最好 N 次,最坏执行了 (N*(N+1)/2 次,通过推导大 O 阶方法 + 时间复杂度一般看最 坏,时间复杂度为 O(N^2)
6. 实例 6 基本操作执行最好 1 次,最坏 O(logN) 次,时间复杂度为 O(logN) ps logN 在算法分析中表示是底 数为2 ,对数为 N 。有些地方会写成 lgN 。(建议通过折纸查找的方式讲解 logN 是怎么计算出来的)
7. 实例 7 通过计算分析发现基本操作递归了 N 次,时间复杂度为 O(N)
8. 实例 8 通过计算分析发现基本操作递归了 2^N 次,时间复杂度为 O(2^N) 。(建议画图递归栈帧的二叉树 讲解)

空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中 额外 临时占用存储空间大小的量度
空间复杂度不是程序占用了多少 bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是 变量的个数
空间复杂度计算规则基本跟实践复杂度类似,也使用 O 渐进表示法
注意: 函数运行时所需要的栈空间 ( 存储参数、局部变量、一些寄存器信息等 ) 在编译期间已经确定好了,因 此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
实例1:
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

实例2: 

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{if(n==0)return NULL;long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; ++i){fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}

实例3:v                                                                                                                                                                                                                                                                                  

(时间是累积的,一去不复返;

    空间是可以重复利用的)

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{if(N == 0)return 1;return Fac(N-1)*N;
}
1. 实例 1 使用了常数个额外空间,所以空间复杂度为 O(1)
2. 实例 2 动态开辟了 N 个空间,空间复杂度为 O(N)
3. 实例 3 递归调用了 N 次,开辟了 N 个栈帧,每个栈帧使用了常数个空间。空间复杂度为 O(N)

 常见复杂度对比

 

例题

轮转数组 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/58437.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【机器学习】对 MLOps 的友好的介绍(MLOps1)

一、说明 我对 MLOps 感兴趣已经有一段时间了。我第一次从机器学习工程师那里了解到它&#xff0c;由于我当时还是一名博士生&#xff0c;我并不知道它的存在。然而&#xff0c;我的好奇心被激起了&#xff0c;我开始了解它。回想起来&#xff0c;我很后悔没有早点了解它&#…

Asynq: 基于Redis实现的Go生态分布式任务队列和异步处理库

Asynq[1]是一个Go实现的分布式任务队列和异步处理库&#xff0c;基于redis&#xff0c;类似Ruby的sidekiq[2]和Python的celery[3]。Go生态类似的还有machinery[4]和goworker 同时提供一个WebUI asynqmon[5]&#xff0c;可以源码形式安装或使用Docker image, 还可以和Prometheus…

最新成果展示:GaN基Micro-LED热学模型数据库的开发及应用

由于GaN基Micro-LED表面积-体积比增加&#xff0c;其在热学方面的性质有别于大尺寸的LED&#xff0c;如缺陷复合导致的热效应将在发光区域中产生诸多“热”点&#xff0c;导致发光波长不均匀&#xff0c;这将影响后期显示系统的成像稳定性。针对上述问题&#xff0c;天津赛米卡…

Android平台一对一音视频通话方案对比:WebRTC VS RTMP VS RTSP

一对一音视频通话使用场景 一对一音视频通话都需要稳定、清晰和流畅&#xff0c;以确保良好的用户体验&#xff0c;常用的使用场景如下&#xff1a; 社交应用&#xff1a;社交应用是一种常见的使用场景&#xff0c;用户可以通过音视频通话进行面对面的交流&#xff1b;在线教…

Linux基础开发工具之Linux自动项目构建工具的使用

目录 前言 1.make/makefile 1.1 依赖关系/依赖方法 2.原理 3.项目清理 4.make的执行问题 5.相关简单的符号介绍 总结 前言 之前给大家介绍了我们在开发过程中所需要使用到的编辑器vim&#xff0c;以及编译器gcc/g的使用&#xff0c;但是我相信大家在使用过程会发现我们在…

centos7实现负载均衡

目录 一、基于 CentOS 7 构建 LVS-DR 集群。 1.1 配置lvs负载均衡服务 1.1.1 下载ipvsadm 1.1.2 增加vip 1.1.3 配置ipvsadm 1.2 配置rs1 1.2.1 编写测试页面 1.2.2 手工在RS端绑定VIP、添加路由 1.2.3 抑制arp响应 1.3 配置rs2 1.4 测试 二、配置nginx负载…

机器学习深度学习—语言模型和数据集

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——文本预处理 &#x1f4da;订阅专栏&#xff1a;机器学习&&深度学习 希望文章对你们有所帮助 语…

ASP.NET Core学习路线图

说明 1. 先决条件 - [C#](https://www.pluralsight.com/paths/csharp) - [Entity Framework](https://www.pluralsight.com/search?qentity%20framework%20core) - [ASP.NET Core](https://www.pluralsight.com/search?qasp.net%20core) - SQL基础知识 2. 通用开发技能 -…

Android 数据库之GreenDAO

GreenDAO 是一款开源的面向 Android 的轻便、快捷的 ORM 框架&#xff0c;将 Java 对象映射到 SQLite 数据库中&#xff0c;我们操作数据库的时候&#xff0c;不再需要编写复杂的 SQL语句&#xff0c; 在性能方面&#xff0c;greenDAO 针对 Android 进行了高度优化&#xff0c;…

MySQL的查询方法

单表查询 素材&#xff1a; 表名&#xff1a;worker-- 表中字段均为中文&#xff0c;比如 部门号 工资 职工号 参加工作 要求&#xff1a; 1、显示所有职工的基本信息。 2、查询所有职工所属部门的部门号&#xff0c;不显示重复的部门号。 3、求出所有职工的人数。 4、…

java动态生成excel并且需要合并单元格

java动态生成excel并且需要合并单元格 先上图看一下预期效果 集成poi <dependency><groupId>cn.afterturn</groupId><artifactId>easypoi-base</artifactId><version>4.0.0</version> </dependency> <dependency><…

docker部署jenkins且jenkins中使用docker去部署项目

docker部署jenkins且jenkins中使用docker去部署项目 1、确定版本 2.346.1是最后一个支持jdk8的 2、编写docker-compose.yml并执行 在这个目录中新增data文件夹&#xff0c;注意data是用来跟docker中的文件进行映射的 docker-compose.yml version: "3.1" service…