【数据结构】AVL 树

文章目录

  • 1. AVL 树的概念
  • 2. AVL 树节点的定义
  • 3. AVL 树的插入
  • 4. AVL 树的旋转
  • 5. AVL 树的验证
  • 6. AVL 树的删除
  • 7. AVL 树的性能

在这里插入图片描述

前面对 map / multimap / set / multiset 进行了简单的介绍【C++】map & set,在其文档介绍中发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成 O(N),因此 map、set 等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。

1. AVL 树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或者接近有序,二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家 G.M.Adelson-Velskii 和 E.M.Landis 在 1962 年发明了一种解决上述问题的方法:当向二叉搜索树中插入新节点后,如果能保证每个节点的左右子树高度之差的绝对值不超过 1(需要对树中的节点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵 AVL 树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是 AVL 树;
  • 左右子树高度之差(简称平衡因子)的绝对值不超过 1(-1 / 0 / 1)。

在这里插入图片描述

如果一棵二叉搜索树是高度平衡的,它就是 AVL 树。如果它有 n 个节点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度是 O ( l o g 2 n ) O(log_2 n) O(log2n)

2. AVL 树节点的定义

template<class T>
struct AVLTreeNode
{AVLTreeNode(const T& data): _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}AVLTreeNode<T>* _pLeft;		// 该节点的左孩子AVLTreeNode<T>* _pRight; 	// 该节点的右孩子AVLTreeNode<T>* _pParent; 	// 该节点的双亲T _data;int _bf; 					// 该节点的平衡因子
};

3. AVL 树的插入

AVL 树就是在二叉搜索树的基础上引入了平衡因子,因此 AVL 树也可以看成是二叉搜索树。那么 AVL 树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点;
  2. 调整节点的平衡因子。
bool Insert(const T& data)
{// 1. 先按照二叉搜索树的规则将节点插入到AVL树中// ...// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否破坏了AVL树的平衡性/*pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可此时:pParent的平衡因子可能有三种情况:0,正负1,正负21. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更新成正负1,此时以pParent为根的树的高度增加,需要继续向上更新3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进行旋转处理*/while (pParent){// 更新双亲的平衡因子if (pCur == pParent->_pLeft)pParent->_bf--;elsepParent->_bf++;// 更新后检测双亲的平衡因子if (0 == pParent->_bf){break;}else if (1 == pParent->_bf || -1 == pParent->_bf){// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1或者-1,说明以双亲为根的二叉树// 的高度增加了一层,因此需要继续向上调整pCur = pParent;pParent = pCur->_pParent;}else{// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent// 为根的树进行旋转处理if (2 == pParent->_bf){// ...}else{// ...}}}return true;
}

4. AVL 树的旋转

如果在一棵原本是平衡的 AVL 树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。根据节点插入位置的不同,AVL 树的旋转分为四种:

  1. 新节点插入较高左子树的左侧 - 左左:右单旋

    在这里插入图片描述

    /*上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
    子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子
    树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有
    右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点
    的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:1. 30节点的右孩子可能存在,也可能不存在2. 60可能是根节点,也可能是子树如果是根节点,旋转完成后,要更新根节点如果是子树,可能是某个节点的左子树,也可能是右子树
    */void _RotateR(PNode pParent)
    {// pSubL: pParent的左孩子// pSubLR: pParent左孩子的右孩子,注意:该PNode pSubL = pParent->_pLeft;PNode pSubLR = pSubL->_pRight;// 旋转完成之后,30的右孩子作为双亲的左孩子pParent->_pLeft = pSubLR;// 如果30的左孩子的右孩子存在,更新亲双亲if (pSubLR)pSubLR->_pParent = pParent;// 60 作为 30的右孩子pSubL->_pRight = pParent;// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲PNode pPParent = pParent->_pParent;// 更新60的双亲pParent->_pParent = pSubL;// 更新30的双亲pSubL->_pParent = pPParent;// 如果60是根节点,根新指向根节点的指针if (NULL == pPParent){_pRoot = pSubL;pSubL->_pParent = NULL;}else{// 如果60是子树,可能是其双亲的左子树,也可能是右子树if (pPParent->_pLeft == pParent)pPParent->_pLeft = pSubL;elsepPParent->_pRight = pSubL;}// 根据调整后的结构更新部分节点的平衡因子pParent->_bf = pSubL->_bf = 0;
    }
    
  2. 新节点插入较高右子树的右侧 - 右右:左单旋

    在这里插入图片描述

    实现及情况考虑可参考右单旋。

  3. 新节点插入较高左子树的右侧 - 左右:先左单旋再右单旋

    在这里插入图片描述

    将双旋变成单旋后再旋转,即:先对 30 进行左单旋,然后再对 90 进行右单旋,旋转完成后再考虑平衡因子的更新。

    // 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进行调整
    void _RotateLR(PNode pParent)
    {PNode pSubL = pParent->_pLeft;PNode pSubLR = pSubL->_pRight;// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节点的平衡因子int bf = pSubLR->_bf;// 先对30进行左单旋_RotateL(pParent->_pLeft);// 再对90进行右单旋_RotateR(pParent);if (1 == bf)pSubL->_bf = -1;else if (-1 == bf)pParent->_bf = 1;
    }
    
  4. 新节点插入较高右子树的左侧 - 右左:先右单旋再左单旋

    在这里插入图片描述

    参考左右双旋。

总结:

假如以 pParent 为根的子树不平衡,即 pParent 的平衡因子为 2 或者 -2,分以下情况考虑:

  1. pParent 的平衡因子为 2,说明 pParent 的右子树高,设 pParent 的右子树的根为 pSubR:

    • 当 pSubR 的平衡因子为 1 时,执行左单旋;
    • 当 pSubR 的平衡因子为 -1 时,执行右左双旋。
  2. pParent 的平衡因子为 -2,说明 pParent 的左子树高,设 pParent 的左子树的根为 pSubL:

    • 当 pSubL 的平衡因子为 -1 时,执行右单旋;
    • 当 pSubL 的平衡因子为 1 时,执行左右双旋。

旋转完成后,原 pParent 为根的子树高度降低,已经平衡,不需要再向上更新。

5. AVL 树的验证

AVL 树是再二叉搜索树的基础上加入了平衡性的限制,因此要验证 AVL 树,可以分两步:

  1. 验证其为二叉搜索树

    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树。

  2. 验证其为平衡树

    • 每个节点子树高度差的绝对值不超过 1(注意节点中如果没有平衡因子);

    • 节点的平衡因子是否计算正确。

      int _Height(PNode pRoot);
      bool _IsBalanceTree(PNode pRoot)
      {// 空树也是AVL树if (nullptr == pRoot) return true;// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差int leftHeight = _Height(pRoot->_pLeft);int rightHeight = _Height(pRoot->_pRight);int diff = rightHeight - leftHeight;// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者pRoot平衡因子的绝对值超过1,则一定不是AVL树if (diff != pRoot->_bf || (diff > 1 || diff < -1))return false;// pRoot的左和右如果都是AVL树,则该树一定是AVL树return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot -> _pRight);
      }
      
  3. 验证用例

    • 常规场景

      { 16, 3, 7, 11, 9, 26, 18, 14, 15 }

    • 特殊场景

      { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 }

      在这里插入图片描述

6. AVL 树的删除

因为 AVL 树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不过与删除不同的是,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

7. AVL 树的性能

AVL 树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过 1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对 AVL 树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的时在删除时,又可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑 AVL 树,但一个结构经常修改,就不太适合。


END

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/586065.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【前端面试3+1】05v-if和v-show的区别、v-if和v-for能同时使用吗、Vuex是什么?【合并两个有序链表】

一、v-if和v-show的区别 v-if 和 v-show 是 Vue.js 中用来控制元素显示与隐藏的指令。 1.v-if&#xff1a; v-if 是根据表达式的真假值来决定是否渲染元素。当表达式为真时&#xff0c;元素会被渲染到 DOM 中&#xff1b;当表达式为假时&#xff0c;元素不会被渲染到 DOM 中。每…

SWM341系列SDRAM应用

SWM341系列SDRAM应用 1、不同的时钟频率下&#xff0c;SDRAM的初始化参数设置 现象&#xff1a;驱屏应用&#xff0c;显示一段时间后出现卡住的现象 分析&#xff1a;SDRAM的初始 化参数优化 主频150Mhz,建议配置CASL 3&#xff0c;TRFC ≥8。 主频100Mhz,ClkDiv可配置为1…

【记录40】echarts离散图

EchartsEvent(val, data, Ymax) {var _that this;const timestampToTime function(timestamp) {var date new Date(timestamp * 1000);//时间戳为10位需*1000&#xff0c;时间戳为13位的话不需乘1000let Y date.getFullYear() -;let M (date.getMonth()1 < 10 ? 0(da…

3、jvm基础知识(三)

如何判断堆上的对象没有被引用&#xff1f; 常见的有两种判断方法&#xff1a;引用计数法和可达性分析法。 引用计数法会为每个对象维护一个引用计数器&#xff0c;当对象被引用时加1&#xff0c;取消引用时减1。 引用计数法的优点是实现简单&#xff0c;缺点有两点&#xff1…

Python | Leetcode Python题解之第3题无重复字符的最长子串

题目&#xff1a; 题解&#xff1a; class Solution:def lengthOfLongestSubstring(self, s: str) -> int:# 哈希集合&#xff0c;记录每个字符是否出现过occ set()n len(s)# 右指针&#xff0c;初始值为 -1&#xff0c;相当于我们在字符串的左边界的左侧&#xff0c;还没…

RWKV_Pytorch:支持多硬件适配的开源大语言模型推理框架

亲爱的技术探索者们&#xff0c;今天我要向大家隆重推荐一个在开源社区中崭露头角的项目——RWKV_Pytorch。这是一个基于Pytorch的RWKV大语言模型推理框架&#xff0c;它不仅具备高效的原生Pytorch实现&#xff0c;而且还扩展了对多种硬件的适配支持&#xff0c;让模型的部署和…

ios 之 netty版本swiftNio(socket创建)

SwiftNio 简介 用于高性能协议服务器和客户端的事件驱动、无阻塞的网络应用程序框架。 SwiftNIO是一个跨平台异步事件驱动的网络应用程序框架&#xff0c;用于快速开发可维护的高性能协议服务器和客户端。 这就像Netty&#xff0c;但是为Swift写的。 Xcode引入swiftNio 在实…

2013年认证杯SPSSPRO杯数学建模A题(第二阶段)护岸框架全过程文档及程序

2013年认证杯SPSSPRO杯数学建模 A题 护岸框架 原题再现&#xff1a; 在江河中&#xff0c;堤岸、江心洲的迎水区域被水流长期冲刷侵蚀。在河道整治工程中&#xff0c;需要在受侵蚀严重的部位设置一些人工设施&#xff0c;以减弱水流的冲刷&#xff0c;促进该处泥沙的淤积&…

梨花带雨网页音乐播放器二开优化修复美化版全开源版本源码

源码简介 最新梨花带雨网页音乐播放器二开优化修复美化版全开源版本源码下载 梨花带雨播放器基于thinkphp6开发的XPlayerHTML5网页播放器前台控制面板,支持多音乐平台音乐解析。二开内容&#xff1a;修复播放器接口问题&#xff0c;把接口本地化&#xff0c;但是集成外链播放器…

微信公众号-图片裁剪并实现上传

一、背景 最近有个需求&#xff0c;需要用户按比例上传图片&#xff0c;即需要在上传前&#xff0c;让用户手动对图片进行裁剪。 看到这个诉求&#xff0c;我就去扒微信的api&#xff0c;发现有个属性叫wx.cropImage是做图片裁剪的&#xff0c;且可以传入对应的裁剪比例。在介…

Leetcode - 2580. 统计将重叠区间合并成组的方案数

文章目录 思路AC CODE总结 题目链接&#xff1a;2580. 统计将重叠区间合并成组的方案数 思路 一个区间合并的板子&#xff0c;计算出区间数目之后&#xff0c;每个区间都有放左和放右两种选法&#xff0c;所以最后的答案就是 2 k 2^k 2k。但是需要用c进行二维数组的排序&…

大模型时代的程序员:不会用AIGC编程,未来5年将被淘汰?

过去&#xff0c;初级程序员入职学习编程时&#xff0c;往往是师傅给一个任务需求&#xff0c;教大体的思路&#xff0c;然后在初级程序员写出代码工作当中培训和纠正&#xff0c;针对不同的命题告诉不同的方案&#xff0c;直到初级程序员把这些经验学会。 但大模型的到来把这…